Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-21T11:41:38.400Z Has data issue: false hasContentIssue false

23 - Affinity-based delivery systems

from Part IV - Biological factor delivery

Published online by Cambridge University Press:  05 February 2015

Jeffrey Mark Halpern
Affiliation:
Case Western Reserve University
Horst A. von Recum
Affiliation:
Case Western Reserve University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pavlukhina, S. and Sukhishvili, S. 2011. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv. Drug Delivery Rev., 63, 822–36.CrossRefGoogle ScholarPubMed
Willerth, S. M. and Sakiyama-Elbert, S. E. 2007. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Delivery Rev., 59, 325–38.CrossRefGoogle ScholarPubMed
Stuart, M. A. C., Huck, W. T. S., Genzer, J. et al. 2010. Emerging applications of stimuli-responsive polymer materials. Nature Mater., 9, 101–13.CrossRefGoogle ScholarPubMed
Sakiyama-Elbert, S. E. and Hubbell, J. A. 2001. Functional biomaterials: design of novel biomaterials. Ann. Rev. Mater. Res., 31, 183–201.CrossRefGoogle Scholar
Naderi, H., Matin, M. M. and Bahrami, A. R. 2011. Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl., 26(4), 383–417.CrossRefGoogle ScholarPubMed
Liechty, W. B., Kryscio, D. R., Slaughter, B. V. and Peppas, N. A. 2010. Polymers of drug delivery systems. Ann. Rev. Chem. Biomed. Eng., 1, 149–73.CrossRefGoogle ScholarPubMed
Liechty, W. B. and Peppas, N. A. 2012. Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharmaceutics Biopharmaceutics, 80(2), 241–6.CrossRefGoogle ScholarPubMed
Grassi, M. and Grassi, G. 2005. Mathematical modelling and controlled drug delivery: matrix systems. Current Drug Delivery, 2, 97–116.CrossRefGoogle ScholarPubMed
Siepmann, J. and Siepmann, F. 2008. Mathematical modeling of drug delivery. Int. J. Pharmaceutics, 364, 328–43.CrossRefGoogle ScholarPubMed
Wang, N. X. and von Recum, H. A. 2011. Affinity-based drug delivery. Macromolec. Biosci., 11, 321–32.CrossRefGoogle ScholarPubMed
Bird, R. B., Stewart, W. E. and Lightfoot, E. N. 2002. Transport Phenomena, 2nd edn. New York: John Wiley & Sons, Inc.Google Scholar
Siepmann, J. and Peppas, N. A. 2001. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Delivery Rev., 48, 139–57.CrossRefGoogle Scholar
Lee, K., Silva, E. A. and Mooney, D. J. 2011. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface, 8, 153–70.CrossRefGoogle Scholar
Sackett, C. K. and Narasimhan, B. 2011. Mathematical modeling of polymer erosion: consequences for drug delivery. Int. J. Pharmaceutics, 418, 104–14.CrossRefGoogle ScholarPubMed
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. and Rudzinski, W. E. 2001. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controll. Release, 70, 1–20.CrossRefGoogle ScholarPubMed
Siepmann, J. and Gopferich, A. 2001. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Delivery Rev., 48, 229–47.CrossRefGoogle ScholarPubMed
Edwards, D. A. and Cohen, D. S. 1995. A mathematical model for a dissolving polymer. AIChE J., 41, 2345–55.CrossRefGoogle Scholar
Willerth, S. M., Johnson, P. J., Maxwel, D. J. et al. 2007. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices. J. Biomed. Mater. Res., 80A, 13–23.CrossRefGoogle Scholar
Leckband, D. and Israelachvili, J. 2001. Intermolecular forces in biology. Q. Rev. Biophys., 34, 105–267.CrossRefGoogle ScholarPubMed
Autumn, K., Liang, Y. A., Hsieh, S. T. et al. 2000. Adhesive force of a single gecko foot-hair. Nature, 405, 681–5.CrossRefGoogle ScholarPubMed
Autumn, K., Sitti, M., Liang, Y. A. et al. 2002. Evidence for van der Waals adhesion in gecko setae. Proc. Nat. Acad. Sci. USA, 99, 12252–6.CrossRefGoogle Scholar
Honig, B. and Nicholls, A. 1995. Classical electrostatics in biology and chemistry. Science, 268, 1144–9.CrossRefGoogle ScholarPubMed
Bostrom, M., Williams, D. R. M. and Ninham, B. W. 2001. Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett.. 87, 168103 (4 pp.).CrossRefGoogle ScholarPubMed
Fogolari, F., Brigo, A. and Molinari, H. 2002. The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Molec. Recognition, 15, 377–92.CrossRefGoogle ScholarPubMed
Desiraju, G. R. and Steiner, T. 1999. The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.Google Scholar
Jeffrey, G. A. and Saenger, W. 1991. Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Zimmer, C., Luck, G., Birch-Hirschfeld, E. et al. 1983. Chain length-dependent association of distamycin-type oligopeptides with A–T and G–C pairs in polydeoxynucleotide duplexes. Biochim. Biophys. Acta, 741, 15–22.CrossRefGoogle Scholar
Dervan, P. B. 1986. Design of sequence-specific DNA-binding molecules. Science, 232, 464–71.CrossRefGoogle ScholarPubMed
Langmuir, I. 1938. The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and cacervates. J. Chem. Phys., 6, 873–96.CrossRefGoogle Scholar
Dobson, C. M. 2003. Protein folding and misfolding. Nature, 426, 884–90.CrossRefGoogle ScholarPubMed
Shea, J.-E. and Brooks, C. L. 2001. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Ann. Rev. Phys. Chem., 52, 499–535.CrossRefGoogle ScholarPubMed
Kim, P. S. and Baldwin, R. L. 1982. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Ann. Rev. Biochem., 51, 459–89.CrossRefGoogle ScholarPubMed
Fersht, A. 1999. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New York: W. H. Freeman & Company.Google Scholar
von Recum, H. A., Kikuchi, A., Yamato, M. et al. 1999. Growth factor and matrix molecules preserve cell function on thermally responsive culture surfaces. Tissue Eng., 5, 251–65.CrossRefGoogle ScholarPubMed
Conrad, H. E. 1998. Heparin-Binding Proteins. San Diego, CA: Academic Press.Google Scholar
Rek, A., Brandner, B., Geretti, E. and Kungl, A. J. 2009. A biophysical insight into the RANTES–glycosaminoglycan interaction. Biochim. Biophys. Acta, 1794, 577–82.CrossRefGoogle ScholarPubMed
Vives, R. R., Crublet, E., Andrieu, J.-P. et al. 2004. A novel strategy for defining critical amino acid residues involved in protein/glycosaminoglycan interactions. J. Biol. Chem., 279, 54327–33.CrossRefGoogle ScholarPubMed
Casu, B. 1994. Heparin and heparin-like polysaccharides. In Polymeric Biomaterials, ed. Dumintriu, S., New York: Marcel Dekker, Inc., pp. 159–78.Google Scholar
Lau, E. K., Paavola, C. D., Johnson, Z. et al. 2004. Indentification of the glycosaminoglycan binding site of the CC chemokine, MCP-1. J. Biol. Chem., 279, 22294–305.CrossRefGoogle Scholar
Martin, L., Blanpain, C., Garnier, P. et al. 2001. Structural and functional analysis of the RANTES–glycosaminoglycans interactions. Biochemistry, 40, 6303–18.CrossRefGoogle ScholarPubMed
Chung, C.-W., Cooker, R. M., Proudfoot, A. E. I. and Wells, T. N. C. 1995. The three-dimensional solution structure of RANTES. Biochemistry, 34, 9307–14.CrossRefGoogle ScholarPubMed
Lortat-Jacob, H., Grosdidier, A. and Imberty, A. 2002. Structural diversity of heparan sulfate binding domains in chemokines. Proc. Nat. Acad. Sci. USA, 99, 1229–34.CrossRefGoogle ScholarPubMed
Wang, N. X., Sieg, S. F., Lederman, M. et al. 2013. Using glycosaminoglycan/chemokine interactions for the affinity-based delivery of 5P12-RANTES for HIV prevention. Molec. Pharmacol., 10(10), 3564–73.CrossRefGoogle Scholar
Schense, J. C. and Hubbell, J. A. 1999. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjugate Chem., 10, 75–81.CrossRefGoogle ScholarPubMed
Sakiyama-Elbert, S. E. and Hubbell, J. A. 2000. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Controll. Release, 65, 389–402.CrossRefGoogle ScholarPubMed
Naimy, H., Buczek-Thomas, J. A., Nugent, M. A., Leymarie, N. and Zaia, J. 2011. Highly sulfated nonreducing end-derived heparan sulfate domains bind fibroblast growth factor-2 with high affinity and are enriched in biologically active fractions. J. Biol. Chem., 286, 19311–19.CrossRefGoogle ScholarPubMed
Yamaguchi, N., Chae, B.-S., Zhang, L., Kiick, K. L. and Furst, E. M. 2005. Rheological characterization of polysaccharide–poly(ethylene glycol) star copolymer hydrogels. Biomacromolecules, 6, 1931–40.CrossRefGoogle ScholarPubMed
Yamaguchi, N. and Kiick, K. L. 2005. Polysaccharide–poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules, 6, 1921–30.CrossRefGoogle ScholarPubMed
Hermanson, G. T. 1996. Bioconjugate Techniques. San Diego, CA: Academic Press.Google Scholar
Maxwell, D. J., Hicks, B. C., Parsons, S. and Sakiyama-Elbert, S. E. 2005. Development of rationally designed affinity-based drug delivery systems. Acta Biomater., 1, 101–13.CrossRefGoogle ScholarPubMed
Felder, C. E., Prilusky, J., Silman, I. and Sussman, J. L. 2007. A server and database for dipole moments of proteins. Nucl. Acids Res., 35, W512–21.CrossRefGoogle ScholarPubMed
Sakiyama-Elbert, S. E. and Hubbell, J. A. 2000. Controlled release of nerve growth factor from heparin-containing fibrin-based cell ingrowth matrix. J. Controll. Release, 69, 149–58.CrossRefGoogle ScholarPubMed
Wood, M. D. and Sakiyama-Elbert, S. E. 2008. Release rate controls biological activity of nerve growth factor released from firbin matrices containing affinty-based delivery systems. J. Biomed. Mater. Res., 84A, 300–12.CrossRefGoogle Scholar
Szejtli, J. 1998. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 98, 1743–53.CrossRefGoogle ScholarPubMed
Szejtli, J. 1988. Cyclodextrin Technology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bender, M. L. and Komiyama, M. 1978. Cyclodextrin Chemistry. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Szejtli, J. 1982. Cyclodextrins and Their Inclusion Complexes. Budapest: Akadémiai Kiadó.Google Scholar
Challa, R., Ahuja, A., Ali, J. and Khar, R. K. 2005. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech, 6, E329–57.CrossRefGoogle Scholar
Kanjickal, D., Lopina, S., Evancho-Chapman, M. M., Schmidt, S. and Donovan, D. 2005. Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J. Biomed. Mater. Res., 74A, 454–60.CrossRefGoogle Scholar
Uekama, K., Hirayama, F. and Irie, T. 1998. Cyclodextrin drug carrier systems. Chem. Rev., 98, 2045–76.CrossRefGoogle ScholarPubMed
Hirayama, F. and Uekama, K. 1999. Cyclodextrin-based controlled drug release system. Adv. Drug Delivery Rev., 36, 125–41.CrossRefGoogle ScholarPubMed
Alvarez-Lorenzo, C., Moya-Ortega, M. D., Loftsson, T., Concheiro, A., and Torres-Labandeira, J. J. 2011. Cyclodextrin-based hydrogels. In Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine, ed. Bilensoy, E., Hoboken, NJ: John Wiley & Sons.Google Scholar
Rodriguez-Tenreiro, C., Alvarez-Lorenzo, C., Rodriguez-Perez, A., Concheiro, A. and Torres-Labandeira, J. J. 2007. Estradiol sustained release from high affinity cyclodextrin hydrogels. Eur. J. Pharm. Biopharm., 55–62.
Rodriguez-Tenreiro, C., Alvarez-Lorenzo, C., Rodriguez-Perez, A., Concheiro, A. and Torres-Labandeira, J. J. 2006. New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharmaceutical Res., 23, 121–30.CrossRefGoogle ScholarPubMed
Cesteros, L. C., Ramirez, C. A., Pecina, A. and Katime, I. 2006. Poly(ethylene glycol-β-cyclodextrin) gels: syntehsis and properties. J. Appl. Polymer Sci., 102, 1162–6.CrossRefGoogle Scholar
Wilson, L. D., Mohamed, M. H. and Headley, J. V. 2011. Surface area and pore structure properties of urethane-based copolymers containing β-cyclodextrin. J. Colloid Interface Sci., 357, 215–22.CrossRefGoogle ScholarPubMed
Thatiparti, T. R., Shoffstall, A. J. and von Recum, H. A. 2010. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials, 31, 2335–47.CrossRefGoogle ScholarPubMed
Thatiparti, T. R. and von Recum, H. A. 2010. Cyclodextrin complexation for affinity-based antibiotic delivery. Macromolec. Biosci., 10, 82–90.CrossRefGoogle ScholarPubMed
Martel, B., Morcellet, M., Ruffin, D., Ducoroy, L. and Weltrowski, M. 2002. Finishing of polyester fabrics with cyclodextrins and polycarboxylic acids as crosslinking agents. J. Inclusion Phenomena Macrocyclic Chem., 44, 443–6.CrossRefGoogle Scholar
Blanchemain, N., Haulon, S., Boschin, F. et al. 2007. Vascular prostheses with controlled release of antibiotics part 1: surface modification with cyclodextrins of PET prostheses. Biomolec. Eng., 24, 149–53.CrossRefGoogle ScholarPubMed
Blanchemain, N., Haulon, S., Martel, B. et al. 2005. Vascular PET prostheses surface modification with cyclodextrin coating: development of new drug delivery system. Eur. J. Vasc. Endovasc. Surg., 29, 628–32.CrossRefGoogle ScholarPubMed
Salmaso, S., Semenzato, A., Bersani, S. et al. 2007. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int. J. Pharmacol., 345, 42–50.CrossRefGoogle ScholarPubMed
Park, I. K., von Recum, H. A., Jiang, S. and Pun, S. H. 2006. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Langmuir, 22, 8478–84.CrossRefGoogle ScholarPubMed
Gonzalez, H., Hwang, S. J. and Davis, M. E. 1999. New class of polymers for the delivery of macromolecular therapeutics. Bioconjugate Chem., 10, 1068–1074.CrossRefGoogle ScholarPubMed
Hwang, S. J., Bellocq, C. N. and Davis, M. E. 2001. Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjugate Chem., 12, 280–90.CrossRefGoogle ScholarPubMed
Park, T. G., Jeong, J. H. and Kim, S. W. 2006. Current status of polymeric gene delivery systems. Adv. Drug Delivery Rev., 58, 467–86.CrossRefGoogle ScholarPubMed
Pun, S. H., Bellocq, C. N., Liu, A. et al. 2004. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chem., 15, 831–40.CrossRefGoogle ScholarPubMed
Cameron, K. S. and Fielding, L. 2002. NMR diffusion coefficient study of steroid–cyclodextrin inclusion complexes. Magn. Reson. Chem., 40, S106–9.CrossRefGoogle Scholar
Lin, S.-Z., Kohyama, N. and Tsuruta, H. 1996. Characterization of steroid/cyclodextrin inclusion compounds by X-ray powder diffractometry and thermal analysis. Industrial Health, 34, 143–8.CrossRefGoogle ScholarPubMed
Lahiani-Skiba, M., Barbot, C., Bounoure, F., Joudieh, S. and Skiba, M. 2006. Solubility and dissolution rate of progesterone–cyclodextrin-polymer systems. Drug Development Industrial Pharmacy, 32, 1043–58.CrossRefGoogle ScholarPubMed
Hedges, A. R. 1998. Industrial applications of cyclodextrins. Chem. Rev., 98, 2035–44.CrossRefGoogle ScholarPubMed
Brewster, M. E., Hora, M. S., Simpkins, J. W. and Bodor, N. 1991. Use of 2-hydroxypropyl-β-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs. Pharmaceutical Res., 8, 792–5.CrossRefGoogle ScholarPubMed
Andersson, H. S., and Nicholls, I. A. 2001. A historical perspective of the development of molecular imprinting. In Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Applications in Analytical Chemistry, ed. Sellergren, B., Amsterdam: Elsevier.Google Scholar
Ekberg, B. and Mosbach, K. 1989. Molecular imprinting: a technique for producing specific separation materials. TIBTECH, 7, 92–6.CrossRefGoogle Scholar
Sellergren, B., and Hall, A. J. 2001. Fundamental aspects on the synthesis and characterisation of imprinted network polymers. In Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Applications in Analytical Chemistry, ed. Sellergren, B., Amsterdam: Elsevier.Google Scholar
Wulff, G. 1995. Molecular imprinting in cross-linked materials with the aid of molecular templates – A way towards artificial antibodies. Angew. Chem. Int. Edition Engl., 34, 1812–32.CrossRefGoogle Scholar
Alvarez-Lorenzo, C. and Concheiro, A. 2004. Molecularly imprinted polymers for drug delivery. J. Chromatography B, 804, 231–45.CrossRefGoogle ScholarPubMed
Ali, M., Horikawa, S., Venkatesh, S. et al. 2007. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. J. Controll. Release, 124, 154–62.CrossRefGoogle ScholarPubMed
White, C. J. and Byrne, M. E. 2010. Molecularly imprinted therapeutic contact lenses. Expert Opin. Drug Deliv., 7, 765–80.CrossRefGoogle ScholarPubMed
Turner, N. W., Jeans, C. W., Brain, K. R. et al. 2006. From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol. Prog., 22, 1474–89.CrossRefGoogle ScholarPubMed
Ge, Y. and Turner, A. P. F. 2008. Too large to fit? Recent developments in molecular imprinting. Trends Biotechnol., 26, 218–23.CrossRefGoogle Scholar
Oss-Ronen, L. and Seliktar, D. 2011. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Acta Biomater., 7, 163–70.CrossRefGoogle ScholarPubMed
Tan, W., Wang, H., Chen, Y. et al. 2011. Molecular aptamers for drug delivery. Trends Biotechnol. 29(12), 634–40.CrossRefGoogle ScholarPubMed
Kryscio, D. R. and Peppas, N. A. 2008. Mimicking biological delivery through feedback-controlled drug release systems based on molecular imprinting. AIChE J., 55, 1311–24.CrossRefGoogle Scholar
Asanuma, H., Akiyama, T., Kajiya, K., Hishiya, T. and Komiyama, M. 2001. Molecular imprinting of cyclodextrin in water for the recognition of nonmeter-scaled guests. Anal. Chim. Acta. 435, 25–33.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×