Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: December 2012

Chapter 7 - Epilogue: conclusions and future directions


1. Dean, G. and Elian, M. (1997). Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 63, 565–568.
2. Lucchinetti, C.F., Brück, W., Rodriguez, M., and Lassmann, H. (1996). Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 6, 259–274.
3. Jankosky, C., Deussing, E., Gibson, R.L., and Haverkos, H.W. (2012). Viruses and vitamin D in the etiology of type 1 diabetes mellitus and multiple sclerosis. Virus Res., in press.
4. Atkins, G.J., McQuaid, S., Morris-Downes, M.M., et al. (2000). Transient virus infection and multiple sclerosis. Rev. Med. Virol. 10, 291–303.
5. Munger, K.L. and Ascherio, A. (2011). Prevention and treatment of MS: studying the effects of vitamin D. Mult. Scler. J. 17, 1405–1411.
6. Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C.C.A., Donnelly, P., and Compston, A. (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219.
7 KrakowskiM. and OwensT. (1996). Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646.
8. Tran, E.H., Prince, E.N., and Owens, T. (2000). IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J. Immunol. 164, 2759–2768.
9. Cua, D.J., Sherlock, J., Chen, Y., et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748.
10. Komiyama, Y., Nakae, S., Matsuki, T., et al. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573.
11. Langrish, C.L., Chen, Y., Blumenschein, W.M., et al. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240.
12. Matusevicius, D., Kivisakk, P., He, B., et al. (1999). Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104.
13. Vaknin-Dembinsky, A., Balashov, K., and Weiner, H.L. (2006). IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J. Immunol. 176, 7768–7774.
14. Sutton, C., Brereton, C., Keogh, B., Mills, K.H., and Lavelle, E.C. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691.
15. Brereton, C.F., Sutton, C.E., Lalor, S.J., Lavelle, E.C., and Mills, K.H. (2009). Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease. J. Immunol. 183, 1715–1723.
16. Kapsenberg, M.L. (2009). Gammadelta T cell receptors without a job. Immunity 31, 181–183.
17. Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C., and Mills, K.H. (2009). Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341.
18. Lalor, S.J., Dungan, L., Sutton, C.E., Basdeo, S.A., Fletcher, J.M., and Mills, K.H.G. (2011). Caspase-1 processed cytokines IL-1β and IL-18 promote IL-17-production by γδ and CD4 T cells that mediate autoimmunity. J. Immunol. 186, 5738–5748.
19. Veldhoen, M., Hocking, R.J., Flavell, R.A., and Stockinger, B. (2006). Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156.
20. Korn, T., Bettelli, E., Gao, W., et al. (2007). IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484–487.
21. Kurzeja, M., Rudnicka, L., and Olszewska, M. (2011). New interleukin-23 pathway inhibitors in dermatology: ustekinumab, briakinumab, and secukinumab. Am. J. Clin. Dermatol. 12, 113–125.
22. Chen, Y., Langrish, C.L., McKenzie, B., et al. (2006). Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326.
23. Segal, B.M., Constantinescu, C.S., Raychaudhuri, A., Kim, L., Fidelus-Gort, R., and Kasper, L.H. (2008). Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804.
24. Polman, C.H., O’Connor, P.W., Havrdova, E., et al. (2006). A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910.
25. Langer-Gould, A., Atlas, S.W., Green, A.J., Bollen, A.W., and Pelletier, D. (2005). Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381.
26. Coles, A.J., Compston, D.A., Selmaj, K.W., et al. (2008). Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801.
27. Keane, J., Gershon, S., Wise, R.P., et al. (2001). Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 345, 1098–1104.
28. Sweeney, C.M., Lonergan, R., Basdeo, S.A., et al. (2011). IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav. Immun. 25, 1170–1181.
29. Stephens, L.A., Malpass, K.H., and Anderton, S.M. (2009). Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur. J. Immunol. 39, 1108–1117.