Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T22:26:32.043Z Has data issue: false hasContentIssue false

8 - Trophoblast regulation of maternal endocrine function and behaviour

from General discussion I

Published online by Cambridge University Press:  07 August 2009

E. B. Keverne
Affiliation:
University of Cambridge, UK
Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

Trophoblast cell lineage exerts considerable influence on maternal endocrine function. Progesterone is the steroid hormone that dominates pregnancy and is necessary to sustain pregnancy. The sustained production of progesterone beyond the normal duration of the oestrous cycle is common to all mammals and is referred to as the maternal recognition of pregnancy. However, the means of producing high levels of progesterone in maternal circulation varies according to species and the stage of pregnancy, and involves different cell types of the trophectoderm lineage. There are three important mechanisms for progesterone regulation by trophoblast cells (a) by direct synthesis, (b) indirectly by production of hormones that sustain the maternal corpus luteum (prolactin in rodents; chorionic gonadotrophins in primates and horses), and (c) indirectly by paracrine factors (antiluteolysins) that prevent uterine production of prostaglandins and luteal regression (sheep and cows trophoblast produce interferon).

The effects of progesterone on maternal tissues are mediated through its interaction with specific intracellular receptors that are members of the nuclear receptor superfamily of transcription factors (Tsai & O'Malley 1994). Progesterone receptor binding induces conformational changes in receptor structure leading to dimerisation, post-translational modification by recruitment of coactivator proteins and binding to specific enhancer DNA elements in promoters that initiate gene transcription. Progesterone has a broad spectrum of effects by acting on many maternal target tissues (Fig. 8.1).

Progesterone function in pregnancy

Implantation

A null mutation of the progesterone receptor in mice prevents decidualisation and pregnancy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accili, D., Nakae, J., Kim, J. J., Park, B. C. & Rother, K. I. (1999). Targeted gene mutations define the roles of insulin and IGF-1 receptors in mouse embryonic development. J. Pediatr. Endocrinol. Metab., 12, 475–85.CrossRefGoogle ScholarPubMed
Arensburg, J., Payne, A. H. & Orly, J. (1999). Expression of steroidogenic genes in maternal and extra-embryonic cells during early pregnancy in mice. Endocrinology, 140, 5220–31.CrossRefGoogle Scholar
Bailey, J. P., Neiport, K., Herbst, M. P.et al. (2004). Prolactin and transforming growth factor-(beta) signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt-forkhead pathway. Mol. Endocrinol., 18, 1171–84.CrossRefGoogle ScholarPubMed
Broad, K. D., Levy, F., Evans, G.et al. (1999). Previous maternal experience potentiates the effect of parturition on oxytocin receptor MRNA in the paraventricular nucleus. Eur. J. Neurosci., 11, 3725–37.CrossRefGoogle ScholarPubMed
Burks, D. J., Font de Mora, J., Schubert, M.et al. (2000). IRS-2 pathways integrate female reproduction and energy homeostasis. Nature, 407, 377–82.Google ScholarPubMed
Conneely, O. M., Mulac-Jericevic, B., Lydon, J. P. & Mayo, F. J. (2001). Reproductive junctions of the progesterone receptor isoforms: lessons from knock-out mice. Mol. Cell. Endocrinol., 179, 97–103.CrossRefGoogle Scholar
Constancia, M., Hemberger, M., Hughes, J.et al. (2002). Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature, 417, 945–8.CrossRefGoogle ScholarPubMed
Curley, J. P., Barton, S. C., Surani, A. M. & Keverne, E. B. (2004). Co-adaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc R. Soc. Lond. B Biol. Sci., 271, 1303–9.CrossRefGoogle Scholar
Domali, E. & Messinis, I. E. (2002). Leptin in pregnancy. J. Matern. Fetal Neonatal Med., 12, 222–30.CrossRefGoogle ScholarPubMed
Elmquist, J. K., Elias, C. F. & Saper, C. B. (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron, 22, 221–32.CrossRefGoogle ScholarPubMed
Evain-Brion, D. & Malassine, A. (2003). Human placenta as an endocrine organ. Growth Horm. IGF Res., 13, S34–7.CrossRefGoogle ScholarPubMed
Everitt, B. J. & Keverne, E. B. (1986). Reproduction. In Lightman, S. L. and Everitt, B. J., eds., Neuroendocrinology. Oxford: Blackwell Scientific Publications, pp. 472–537.Google Scholar
Ferguson-Smith, A. C. & Surani, M. A. (2001). Imprinting and the epigenetic asymmetry between parental genomes. Science, 293, 1086–9.CrossRefGoogle ScholarPubMed
Fowden, A. L. (2003). The insulin-like growth factors and feto-placental growth. Placenta, 24, 803–12.CrossRefGoogle ScholarPubMed
Grattan, D. R. (2002). Behavioural significance of prolactin signaling in the central nervous system during pregnancy and lactation. Reproduction, 123, 497–506.CrossRefGoogle ScholarPubMed
Guidice, L. C., Mark, S. P. & Irwin, J. C. (1998). Paracrine actions of insulin-like growth factors and IGF binding protein-1 in non-pregnant human endometrium and at the decidual–trophoblast interface. J. Reprod. Immunol., 39, 133–48.CrossRefGoogle Scholar
Haig, D. & Graham, C. (1991). Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell, 64, 1045–6.Google ScholarPubMed
Han, V. K. & Carter, A. M. (2000). Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta, 4, 289–305.CrossRefGoogle Scholar
Hemberger, M., Nozaki, T., Masutani, M. & Cross, J. C. (2003). Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion. Dev. Dyn., 227, 185–91.CrossRefGoogle ScholarPubMed
Ismail, P. M., Amato, P., Soyal, S. M.et al. (2003). Progesterone involvement in breast development and tumorigenesis – as revealed by progesterone receptor ‘knockout’ and ‘knockin’ mouse models. Steroids, 68, 779–87.CrossRefGoogle ScholarPubMed
Jabbour, H. N. & Critchley, H. O. D. (2001). Potential roles of decidual prolactin in early pregnancy. Reproduction, 121, 197–205.CrossRefGoogle ScholarPubMed
Jakimuik, A. J., Skalba, P., Huterski, D.et al. (2003). Leptin messenger ribonucleic acid (mRNA) content in the human placenta at term: relationship to levels of leptin in cord blood and placental weight. Gynecol. Endocrinol., 17, 311–16.CrossRefGoogle Scholar
Johnson, A. E., Ball, G. F., Coirini, H.et al. (1989). Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat. Endocrinology, 125, 1414–19.CrossRefGoogle ScholarPubMed
Kafri, T., Ariel, M., Brandeis, M.et al. (1992). Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev., 6, 705–14.CrossRefGoogle ScholarPubMed
Kendrick, K. M. & Keverne, E. B. (1992). Control of synthesis and release of oxytocin in the sheep brain. In Pederson, C. A., Caldwell, J. D., Jirikowski, G. F. & Insel, T. R., eds., Annals of the New York Academy of Sciences Volume 652: Oxytocin in Maternal, Sexual, and Social Behaviors. New York: New York Academy of Sciences, pp. 102–21.Google Scholar
Keverne, E. B. (1984). Reproductive behaviour. In Austin, C. R. and Short, R. V., eds., Reproduction in Mammals. Book 4, Reproductive Fitness.Cambridge: Cambridge University Press, pp. 133–75.CrossRefGoogle Scholar
Keverne, E. B. (2001). Genomic imprinting, maternal care, and brain evolution. Horm. Behav., 40, 146–55.CrossRefGoogle ScholarPubMed
Laliberte, C., DiMarzo, L., Morrish, D. W. & Kaufman, S. (2004). Neurokinin B causes concentration-dependent relaxation of isolated human placental resistance vessels. Regul. Pept., 117, 123–6.CrossRefGoogle ScholarPubMed
Lee, S. J., Talamantes, F., Wilder, E., Linzer, D. I. H. & Nathans, D. (1988). Trophoblastic giant cells of the mouse placenta as the site of proliferin synthesis. Endocrinology, 122, 1761–8.CrossRefGoogle ScholarPubMed
Li, L. L., Keverne, E. B., Aparicio, S.et al. (1999). Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science, 294, 330–3.CrossRefGoogle Scholar
Linzer, D. I. & Fisher, S. J. (1999). The placenta and the prolactin family of hormones: regulation of the physiology of pregnancy. Mol. Endocrinol., 13, 837–40.CrossRefGoogle ScholarPubMed
Mann, P. E. & Bridges, R. S. (2001). Lactogenic hormone regulation of maternal behavior. Prog. Brain Res., 133, 251–62.CrossRefGoogle ScholarPubMed
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 203, 501–2.CrossRefGoogle Scholar
Monk, M., Boubelik, M. & Lehnert, S. (1987). Temporal and regional changes in DNA methylation in the embryonic, extra-embryonic and germ cell lineages during mouse embryo development. Development, 99, 371–82.Google Scholar
Mousseau, T. S. & Fox, C. (1998). The adaptive significance of maternal effects. Trends Ecol. Evol., 13, 403–7.CrossRefGoogle ScholarPubMed
Pekonen, F., Suikkari, A. M., Makinen, T. & Rutanen, E. M. (1988). Different insulin-like growth factor binding species in human placenta and decidua. J. Clin. Endocrinol. Metab., 67, 1250–7.CrossRefGoogle ScholarPubMed
Rahmouni, K. & Haynes, W. G. (2001). Leptin signaling pathways in the central nervous system: interactions between neuropeptide Y and melanocortins. BioEssays, 23, 1095–9.CrossRefGoogle ScholarPubMed
Russell, J. A., Douglas, A. J. & Ingram, C. D. (2001). Brain preparations for maternity – adaptive changes in behavioural and neuroendocrine systems during pregnancy and lactation. An overview. Prog. Brain Res., 133, 1–38.CrossRefGoogle ScholarPubMed
Sagawa, N., Yura, S., Itoh, H.et al. (2002). Possible role of placental leptin in pregnancy: a review. Endocrine, 19, 65–71.CrossRefGoogle ScholarPubMed
Seeber, R. M., Smith, J. T. & Waddell, B. J. (2002). Plasma leptin binding activity and hypothalamic leptin receptor expression during pregnancy and lactation in the rat. Biol. Reprod., 66, 1762–7.CrossRefGoogle ScholarPubMed
Smith, J. T. & Waddell, B. J. (2003). Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology, 144, 3024–30.CrossRefGoogle ScholarPubMed
Smith, J. E., Jansen, A. S. P., Gilbey, M. P. & Loewy, A. D. (1998). CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res., 786, 153–64.CrossRefGoogle ScholarPubMed
Soares, M. J., Muller, H., Orwig, K. E., Peters, T. J. & Dai, G. (1998). The uteroplacental prolactin family and pregnancy. Biol. Reprod., 58, 273–84.CrossRefGoogle Scholar
Tibbetts, T. A., DeMayo, F., Rich, S., Conneely, O. M. & O'Malley, B. W. (1999). Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility. Proc. Natl. Acad. Sci. U.S.A., 96, 12021–6.CrossRefGoogle ScholarPubMed
Tsai, M. J. & O'Malley, B. W. (1994). Molecular mechanisms of action of steroid. Thyroid receptor superfamily members. Annu. Rev. Biochem., 63, 451–86.CrossRefGoogle ScholarPubMed
Volpert, O., Jackson, D., Bouck, N. & Linzer, D. I. (1996). The insulin-like growth factor II/mannose 6-phosphate receptor is required for proliferin-induced angiogenesis. Endocrinology, 137, 3871–6.CrossRefGoogle ScholarPubMed
Vrana, P. B., Guan, X.-J., Ingram, S. & Tilghman, S. M. (1998). Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat. Genet., 20, 362–5.CrossRefGoogle ScholarPubMed
Weimers, D. O., Ain, R., Ohboshi, S. & Soares, M. J. (2003a). Migratory trophoblast cells express a newly identified member of the prolactin gene family. J. Endocrinol., 179, 335–46.CrossRefGoogle Scholar
Weimers, D. O., Shao, L. J., Ain, R., Dai, G. & Soares, M. J. (2003b). The mouse prolactin gene family locus. Endocrinology, 144, 313–25.CrossRefGoogle Scholar
Wolf, J. B. (2000). Gene interactions from maternal effects. Evolution, 54, 1882–98.CrossRefGoogle ScholarPubMed
Yura, S., Sagawa, N., Itoh, H.et al. (2003). Resistin is expressed in the human placenta. J. Clin. Endocrinol. Metab., 88, 1394–7.CrossRefGoogle ScholarPubMed
Short, R. V. (1976). The evolution of human reproduction. Proc. R. Soc. Lond. B Biol. Sci., 195, 3–24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×