Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T20:52:52.030Z Has data issue: false hasContentIssue false

6 - Trophoblast and the first trimester environment

from General discussion I

Published online by Cambridge University Press:  07 August 2009

Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

Introduction

Human early placentation is a difficult topic for systematic research due to ethical constraints, the relative inaccessibility of the tissues and the lack of a suitable animal model, yet events taking place lay the foundation for a successful pregnancy. For many years our knowledge had been reliant upon the interpretation of static images of histological material from pregnant hysterectomy or miscarriage samples. The advent of high-resolution ultrasound imaging in the 1980s provided major new impetus, however, for it enabled events to be followed dynamically in vivo with remarkable clarity. Novel findings using this technique prompted a series of physiological investigations that together have led to a radical reappraisal of the environment in which the feto–placental unit develops. Central to this new appreciation is the premise that the human placenta is not fully haemochorial until the start of the second trimester.

The maternal circulation to the human placenta

During the late secretory phase of the menstrual cycle capillaries arising from the distal segments of the spiral arteries form a plexus within the superficial endometrium that connects with the endometrial veins. When the conceptus implants, the invading syncytiotrophoblastic mantle comes into contact with these capillaries, stimulating them to dilate through endothelial proliferation to form sinusoids, before finally breaking into them (Hertig et al. 1956, Carter 1997). As a result communications are established with the developing lacunae of the trophoblast mantle, the forerunners of the intervillous space, and maternal erythrocytes can be observed in these cavities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, K. Z. M. (1997). Stereological study of the effect of altitude on the trophoblast cell populations of human term placental villi. Placenta, 18, 447–50.CrossRefGoogle ScholarPubMed
Alsat, E., Wyplosz, P. & Malassiné, A. (1996). Hypoxia impairs cell fusion and differentiation process in human cytotrophoblast cells, in vitro. J. Cell. Physiol., 168, 346–53.3.0.CO;2-1>CrossRefGoogle Scholar
Amoroso, E. C. (1952). Placentation. In Parkes, A. S., ed., Marshall's Physiology of Reproduction. London: Longmans, Green and Co, pp. 127–311.Google Scholar
Arrigo, A.-P. & Kretz-Remy, C. (1998). Regulation of mammalian gene expression by free radicals. In Aruoma, O. I. & Halliwell, B., eds., Molecular Biology of Free Radicals in Human Diseases. Saint Lucia: OICA International, pp. 183–223.Google Scholar
Benjamin, L. E., Hemo, I. & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–8.Google ScholarPubMed
Benyo, D. F., Miles, T. M. & Conrad, K. P. (1997). Hypoxia stimulates cytokine production by villous explants from the human placenta. J. Clin. Endocrinol. Metab., 82, 1582–8.Google ScholarPubMed
Burton, G. J., Jauniaux, E. & Watson, A. L. (1999). Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy; the Boyd Collection revisited. Am. J. Obstet. Gynecol., 181, 718–24.CrossRefGoogle ScholarPubMed
Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N. & Jauniaux, E. (2002). Uterine glands provide histiotrophic nutrition for the human foetus during the first trimester of pregnancy. J. Clin. Endocrinol. Metab., 87, 2954–9.CrossRefGoogle ScholarPubMed
Burton, G. J., Hempstock, J. & Jauniaux, E. (2003). Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod. Bio. Med. Online., 6, 84–96.CrossRefGoogle ScholarPubMed
Caniggia, I., Mostachfi, H., Winter, J.et al. (2000). Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ3. J. Clin. Invest., 105, 577–87.CrossRefGoogle Scholar
Carter, A. M. (1997). When is the maternal placental circulation established in man?Placenta, 18, 83–7.CrossRefGoogle ScholarPubMed
Carter, A. M. (2000). Placental oxygen consumption. Part I: in vivo studies – a review. Placenta, 21 (Suppl A), S31–7.CrossRefGoogle ScholarPubMed
Chen, K., Thomas, S. R. & Keaney, J. F. (2003). Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic. Biol. Med., 35, 117–32.CrossRefGoogle ScholarPubMed
Cooper, J. C., Sharkey, A. M., McLaren, J., Jones, Charnock D. S. & Smith, S. K. (1995). Localization of vascular endothelial growth factor and its receptor, flt, in human placenta and decidua by immunohistochemistry. J. Reprod. Fertil., 105, 205–13.CrossRefGoogle ScholarPubMed
Coppens, M., Loquet, P., Kollen, F., Neubourg, F. & Buytaert, P. (1996). Longitudinal evaluation of uteroplacental and umbilical blood flow changes in normal early pregnancy. Ultrasound Obstet. Gynecol., 7, 114–21.CrossRefGoogle ScholarPubMed
Crompton, M. (2000). Mitochondrial intermembrane junctional complexes and their role in cell death. J. Physiol., 529, 11–21.CrossRefGoogle ScholarPubMed
Dalton, C. F., Laird, S. M., Estdale, S. E., Saravelos, H. G. & Li, T. C. (1998). Endometrial protein PP14 and CA-125 in recurrent miscarriage patients; correlation with pregnancy outcome. Hum. Reprod., 13, 3197–202.CrossRefGoogle ScholarPubMed
Dockery, P., Li, T. C., Rogers, A. W., Cooke, I. D. & Lenton, E. A. (1988). The ultrastructure of the glandular epithelium in the timed endometrial biopsy. Hum. Reprod., 3, 826–34.CrossRefGoogle ScholarPubMed
Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev., 82, 47–95.CrossRefGoogle ScholarPubMed
Dyson, C. A. J., Hempstock, J., Jauniaux, E., Charnock-Jones, D. S. & Burton, G. J. (2003). Regulation of the level of immunoreactive HIF-1α by oxidative stress in the early human placenta. Placenta, 24, A6.Google Scholar
Esterman, A., Finlay, T. H. & Dancis, J. (1996). The effect of hypoxia on term trophoblast: hormone synthesis and release. Placenta, 17, 217–22.CrossRefGoogle ScholarPubMed
Fox, H. (1964). The villous cytotrophoblast as an index of placental ischaemia. J. Obstet. Gynaecol. Br. Commw., 71, 885–93.CrossRefGoogle ScholarPubMed
Freeman, B. A. & Crapo, J. D. (1981). Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem., 256, 10986–92.Google ScholarPubMed
Freeman, M. L., Borrelli, M. J., Meredith, M. J. & Lepock, J. R. (1999). On the path to the heat shock response: destabilization and formation of partially folded protein intermediates, a consequence of protein thiol modification. Free Radic. Biol. Med., 26, 737–45.CrossRefGoogle ScholarPubMed
Freese, U. E. & Maciolek, B. J. (1969). Plastoid injection studies of the uteroplacental vascular relationship in the human. Obstet. Gynecol., 33, 8–16.Google ScholarPubMed
Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M. & Fisher, S. J. (1996). Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J. Clin. Invest., 97, 540–50.CrossRefGoogle ScholarPubMed
Graham, C. H., Postovit, L. M., Park, H., Canning, M. T. & Fitzpatrick, T. E. (2000). Adriana and Luisa Castellucci Award Lecture 1999: role of oxygen in the regulation of trophoblast gene expression and invasion. Placenta, 21, 443–50.CrossRefGoogle ScholarPubMed
Gray, C. A., Bartol, F. F., Taylor, K. M.et al. (2000). Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle. Biol. Reprod., 62, 448–56.CrossRefGoogle Scholar
Greenwold, N., Jauniaux, E., Gulbis, B.et al. (2003). Relationships between maternal serum endocrinology, placental karyotype and intervillous circulation in early pregnancy failure. Fertil. Steril., 79, 1373–9.CrossRefGoogle Scholar
Haddad, J. J. & Land, S. C. (2001). A non-hypoxic, ROS-sensitive pathway mediates TNF-α-dependent regulation of HIF-1. FEBS Lett., 505, 269–74.CrossRefGoogle Scholar
Halliwell, B. & Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine. Oxford: Oxford Science Publications.Google Scholar
Hempstock, J., Bao, Y.-P., Bar-Issac, M.et al. (2003a). Intralobular differences in antioxidant enzyme expression and activity reflect oxygen gradients within the human placenta. Placenta, 24, 517–23.CrossRefGoogle Scholar
Hempstock, J., Jauniaux, E. & Burton, G. J. (2003b). Secretory activity of the endometrial glands is maintained throughout the first trimester of human pregnancy. Placenta, 24, A19.Google Scholar
Hempstock, J., Jauniaux, E., Greenwold, N. & Burton, G. J. (2003c). The contribution of placental oxidative stress to early pregnancy failure. Hum. Pathol., 34, 1265–75.CrossRefGoogle Scholar
Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S. & Floyd, R. A. (2000). Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med., 28, 1456–62.CrossRefGoogle ScholarPubMed
Hertig, A. T., Rock, J. & Adams, E. C. (1956). A description of 34 human ova within the first 17 days of development. Am. J. Anat., 98, 435–94.CrossRefGoogle ScholarPubMed
Hochachka, P. W. & Lutz, P. L. (2001). Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 130, 435–59.CrossRefGoogle ScholarPubMed
Hustin, J. & Schaaps, J. P. (1987). Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am. J. Obstet. Gynecol., 157, 162–8.CrossRefGoogle ScholarPubMed
Hustin, J., Schaaps, J. P. & Lambotte, R. (1988). Anatomical studies of the utero-placental vascularisation in the first trimester of pregnancy. Troph. Res., 3, 49–60.Google Scholar
Hustin, J., Jauniaux, E. & Schaaps, J. P. (1990). Histological study of the materno-embryonic interface in spontaneous abortion. Placenta, 11, 477–86.CrossRefGoogle ScholarPubMed
Irani, K. (2000). Oxidant signaling in vascular cell growth, death, and survival. A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ. Res., 87, 179–83.CrossRefGoogle ScholarPubMed
Jaffe, R. & Warsof, S. L. (1992). Color Doppler imaging in the assessment of uteroplacental blood flow in abnormal first trimester intrauterine pregnancies: an attempt to define the etiologic mechanisms. J. Ultrasound Med., 11, 41–4.CrossRefGoogle ScholarPubMed
Jaffe, R., Jauniaux, E. & Hustin, J. (1997). Maternal circulation in the first-trimester human placenta – myth or reality?Am. J. Obstet. Gynecol., 176, 695–705.CrossRefGoogle ScholarPubMed
Jauniaux, E., Zaidi, J., Jurkovic, D., Campbell, S. & Hustin, J. (1994). Comparison of colour Doppler features and pathologic findings in complicated early pregnancy. Hum. Reprod., 9, 243–7.CrossRefGoogle Scholar
Jauniaux, E., Jurkovic, D. & Campbell, S. (1995). Current topic: In vivo investigation of the placental circulations by Doppler echography. Placenta, 16, 323–31.CrossRefGoogle ScholarPubMed
Jauniaux, E., Watson, A. L., & Hempstock, J.et al. (2000). Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am. J. Pathol., 157, 2111–22.CrossRefGoogle Scholar
Jauniaux, E., Watson, A. L. & Burton, G. J. (2001). Evaluation of respiratory gases and acid-base gradients in fetal fluids and uteroplacental tissue between 7 and 16 weeks. Am. J. Obstet. Gynecol., 184, 998–1003.CrossRefGoogle Scholar
Jauniaux, E., Hempstock, J., Greenwold, N. & Burton, G. J. (2003). Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am. J. Pathol., 162, 115–25.CrossRefGoogle ScholarPubMed
Jauniaux, E., Cindrova-Davies, T. & Johns, J. (2004). Distribution and transfer pathways of antioxidant molecules inside the first trimester human gestational sac. J. Clin. Endocrinol. Metab., 89, 1452–8.CrossRefGoogle ScholarPubMed
Khong, T. Y., Liddell, H. S. & Robertson, W. B. (1987). Defective haemochorial placentation as a cause of miscarriage. A preliminary study. Br. J. Obstet. Gynaecol., 94, 649–55.CrossRefGoogle ScholarPubMed
Kliman, H. J. (2000). Uteroplacental blood flow. The story of decidualisation, menstruation and trophoblast invasion. Am. J. Pathol., 157, 1759–68.CrossRefGoogle Scholar
Kojima, K., Kanzaki, H., Iwai, M.et al. (1995). Expression of leukaemia inhibitory factor (LIR) receptor in human placenta: a possible role for LIF in the growth and differentiation of trophoblasts. Hum. Reprod., 10, 1907–11.CrossRefGoogle Scholar
Kowaltowski, A. J., Castilho, R. F. & Vercesi, A. E. (2001). Mitochondrial permeability transition and oxidative stress. FEBS Lett., 495, 12–15.CrossRefGoogle ScholarPubMed
Kudo, Y., Boyd, C. A., Sargent, I. L. & Redman, C. W. (2003). Hypoxia alters expression and function of syncytin and its receptor during trophoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialization in preeclampsia. Biochim. Biophys. Acta., 1638, 63–71.CrossRefGoogle Scholar
Kurjak, A. & Kupesic, S. (1997). Doppler assessment of the intervillous blood flow in normal and abnormal early pregnancy. Obstet. Gynecol., 89, 252–6.CrossRefGoogle ScholarPubMed
Kurjak, A., Kupesic, S., Hafner, T.et al. (1997). Conflicting data on intervillous circulation in early pregnancy. J. Perinat. Med., 25, 225–36.Google ScholarPubMed
Ladines-Llave, C. A., Maruo, T., Manalo, A. S. & Mochizuki, M. (1991). Cytologic localization of epidermal growth factor and its receptor in developing human placenta varies over the course of pregnancy. Am. J. Obstet. Gynecol., 165, 1377–82.CrossRefGoogle ScholarPubMed
Lando, D., Peet, D. D., Whelan, D. D., Gorman, J. J. & Whitelaw, M. L. (2002). Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science, 295, 858–61.CrossRefGoogle ScholarPubMed
Lando, D., Gorman, J. J., Whitelaw, M. L. & Peet, D. D. (2003). Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur. J. Biochem., 270, 781–90.CrossRefGoogle ScholarPubMed
Larsen, W. J. (1997). Human Embryology. New York: Churchill Livingstone.
Leist, M., Single, B., Castoldi, A. F., Kühnle, S. & Nicotera, P. (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med., 185, 1481–6.CrossRefGoogle ScholarPubMed
Lennard, S. N., Gerstenberg, C., Allen, W. R. & Stewart, F. (1998). Expression of epidermal growth factor and its receptor in equine placental tissues. J. Reprod. Fertil., 112, 49–57.CrossRefGoogle ScholarPubMed
Maruo, T., Matsuo, H., Murata, K. & Mochizuki, M. (1992). Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J. Clin. Endocrinol. Metab., 75, 1362–7.Google ScholarPubMed
Matsubara, S. & Tamada, T. (1991). Ultracytochemical localization of NAD(P)H oxidase activity in the human placenta. Acta Obstet. Gynaecol. Jap., 43, 117–21.Google ScholarPubMed
Mi, S., Lee, X., Li, X.et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 403, 785–9.CrossRefGoogle ScholarPubMed
Mikolajczyk, M., Skrzypczak, J., Szymanowski, K. & Wirstlein, P. (2003). The assessment of LIF in uterine flushing – a possible new diagnostic tool in states of impaired infertility. Reprod. Biol., 3, 259–70.Google Scholar
Moore, K. L. & Persaud, T. V. N. (1993). The Developing Human: Clinically Orientated Embryology. Philadelphia: W. B. Saunders.Google Scholar
Mossman, H. W. (1987). Vertebrate Fetal Membranes: Comparative Ontogeny and Morphology; Evolution; Phylogenetic Significance; Basic Functions; Research Opportunities. London: Macmillan.CrossRefGoogle Scholar
Mühlhauser, J., Crescimanno, C., Kaufmann, P.et al. (1993). Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J. Histochem. Cytochem., 41, 165–73.CrossRefGoogle ScholarPubMed
New, D. A. T. (1978). Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev., 53, 81–122.CrossRefGoogle Scholar
Palmer, M. E., Watson, A. L. & Burton, G. J. (1997). Morphological analysis of degeneration and regeneration of syncytiotrophoblast in first trimester villi during organ culture. Hum. Reprod., 12, 379–82.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Dixon, G., Robertson, W. B. & Brosens, I. (1980). Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta, 1, 3–19.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Bland, J. M., Robertson, W. B., Dixon, G. & Brosens, I. (1981). The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta, 2, 303–16.CrossRefGoogle ScholarPubMed
Raha, S., McEachern, G. E., Myint, A. T. & Robinson, B. H. (2000). Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic. Biol. Med., 29, 170–80.CrossRefGoogle ScholarPubMed
Raijmakers, M. T. M., Burton, G. J., Jauniaux, E., Seed, P. T. & Poston, L. (2004). Increased placental NAD(P)H oxidase mediated superoxide generation in early pregnancy. J. Physiol., 555P, C104.Google Scholar
Rajakumar, A. & Conrad, K. P. (2000). Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. Biol. Reprod., 63, 559–69.CrossRefGoogle ScholarPubMed
Ramsey, E. M. & Donner, M. W. (1980). Placental Vasculature and Circulation: Anatomy, Physiology, Radiology, Clinical Aspects, Atlas and Textbook. Stuttgart: Georg Thieme.Google Scholar
Reynolds, S. R. M. (1966). Formation of fetal cotyledons in the hemochorial placenta. A theoretical consideration of the functional implications of such an arrangement. Am. J. Obstet. Gynecol., 94, 425–39.CrossRefGoogle ScholarPubMed
Reynolds, S. R. M., Freese, U. E., Bieniarz, J.et al. (1968). Multiple simultaneous intervillous space pressures recorded in several regions of the hemochorial placenta in relation to functional anatomy of the fetal cotyledon. Am. J. Obstet. Gynecol., 102, 1128–34.CrossRefGoogle ScholarPubMed
Rodesch, F., Simon, P., Donner, C. & Jauniaux, E. (1992). Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol., 80, 283–5.Google ScholarPubMed
Schaaps, J. P. & Hustin, J. (1988). In vivo aspect of the maternal–trophoblastic border during the first trimester of gestation. Troph. Res., 3, 39–48.Google Scholar
Schneider, H. (2000). Placental oxygen consumption. Part II: in vitro studies – a review. Placenta, 21 (Suppl A), S38–44.Google ScholarPubMed
Schwärzler, P., Holden, D., Nielsen, S.et al. (1999). The conservative management of first trimester miscarriages and the use of colour Doppler sonography for patient selection. Hum. Reprod., 14, 1341–5.CrossRefGoogle ScholarPubMed
Semenza, G. L. (1998). Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev., 8, 588–94.CrossRefGoogle ScholarPubMed
Sharkey, A. M., King, A., Clark, D. E.et al. (1999). Localization of leukaemia inhibitory factor and its receptor in human placenta throughout pregnancy. Biol. Reprod., 60, 355–64.CrossRefGoogle ScholarPubMed
Stroka, D. M., Burkhardt, T., Desbaillets, I.et al. (2001). HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J., 15, 2445–53.CrossRefGoogle ScholarPubMed
Tuckerman, E., Laird, S. M., Stewart, R., Wells, M. & Li, T. C. (2004). Markers of endometrial function in women with unexplained recurrent pregnancy loss: a comparison between morphologically normal and retarded endometrium. Hum. Reprod., 19, 196–205.Google ScholarPubMed
Valentin, L., Sladkevicius, P., Laurini, R., Söderberg, H. & Marsal, K. (1996). Uteroplacental and luteal circulation in normal first-trimester pregnancies: Doppler ultrasonographic and morphologic study. Am. J. Obstet. Gynecol., 174, 768–75.CrossRefGoogle ScholarPubMed
Watson, A. L., Palmer, M. E., Jauniaux, E. & Burton, G. J. (1997). Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age. Placenta, 18, 295–9.CrossRefGoogle ScholarPubMed
Watson, A. L., Skepper, J. N., Jauniaux, E. & Burton, G. J. (1998a). Changes in the concentration, localization and activity of catalase within the human placenta during early gestation. Placenta, 19, 27–34.CrossRefGoogle Scholar
Watson, A. L., Skepper, J. N., Jauniaux, E. & Burton, G. J. (1998b). Susceptibility of human placental syncytiotrophoblastic mitochondria to oxygen-mediated damage in relation to gestational age. J. Clin. Endocrinol. Metab., 83, 1697–1705.Google Scholar
Wigglesworth, J. S. (1969). Vascular anatomy of the human placenta and its significance for placental pathology. J. Obstet. Gynaecol. Br. Commw., 76, 979–89.CrossRefGoogle ScholarPubMed
Wooding, F. B. P. & Flint, A. P. F. (1994). Placentation. In , G. E. Lamming, ed., Marshall's Physiology of Reproduction. London: Chapman & Hall, pp. 233–460.Google Scholar
Zhang, E. G., Smith, S. K., Baker, P. N. & Charnock-Jones, D. S. (2001). The regulation and localization of angiopoietin-1, -2, and their receptor Tie2 in normal and pathologic human placentae. Mol. Med., 7, 624–35.Google ScholarPubMed
Zhang, E. C., Burton, G. J., Smith, S. K. & Charnock-Jones, D. S. (2002). Placental vessel adaptation during gestation and to high altitude: changes in diameter and perivascular cell coverage. Placenta, 23, 751–62.CrossRefGoogle ScholarPubMed
Carter, A. M. (1997). When is the maternal placental circulation established in man?Placenta, 18, 83–7.CrossRefGoogle ScholarPubMed
Wolf, F., Wolf-Peeters, C., Brosens, I. & Robertson, W. B. (1980). The human placental bed: electron microscopic study of trophoblast invasion of spiral arteries. Am. J. Obstet. Gynecol., 137, 58–70.CrossRefGoogle ScholarPubMed
Reynolds, S. R. M. (1966). Formation of fetal cotyledons in the hemochorial placenta. A theoretical consideration of the functional implications of such an arrangement. Am. J. Obstet. Gynecol., 94, 425–9.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×