Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-26T09:46:21.926Z Has data issue: false hasContentIssue false

9 - Molecular signalling in embryo–uterine interactions during implantation

from General discussion II

Published online by Cambridge University Press:  07 August 2009

S. K. Dey
Affiliation:
Vanderbilt University Medical Center, USA
Susanne Tranguch
Affiliation:
Vanderbilt University Medical Center, USA
Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

The process of implantation involves complex interactions between embryonic and uterine cells. The major events of this process include synchronised development of the preimplantation embryo into an implantation-competent blastocyst and establishment of the uterus to the receptive state (Psychoyos 1973a), escape of the semiallogenic embryo from the maternal immunological response (Beer & Billingham 1978), increased capillary permeability and blood flow at the site of blastocyst apposition (Psychoyos 1973a), post-attachment localised stromal decidualisation (De Feo 1967, Psychoyos 1973a) and controlled uterine invasion by embryonic trophoblasts (Kirby & Cowell 1968). Uterine receptivity is defined as a restricted period when the uterus supports blastocyst attachment (Psychoyos 1973b). Therefore, successful implantation of an embryo is contingent upon the initiation of these critical events during this ‘window’ of receptivity, and failure to initiate these events results in early pregnancy failure.

Preimplantation embryo development, which culminates in the formation of a blastocyst, requires the activation of the embryonic genome. Upon activation of the embryonic genome, the embryo grows rapidly to form a blastocyst. At the blastocyst stage, embryos mature and escape from their zona pellucidae to gain implantation competency. The differentiated and expanded blastocyst is composed of three cell types: the outer polarised epithelial trophectoderm, the primitive endoderm and the pluripotent inner cell mass (ICM). The ICM provides the future cell lineages for the embryo proper (McLaren 1990, Hogan et al. 1994), while the trophectoderm, the very first epithelial cell type in the developmental process, makes the initial physical and physiological connection with the uterine luminal epithelium.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aono, A. M., Hazama, K., Notoya, S.et al. (1995). Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem. Biophys. Res. Commun., 210, 670–7.CrossRefGoogle ScholarPubMed
Barak, Y., Liao, D., He, W.et al. (2002). Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. U.S.A., 99, 303–8.CrossRefGoogle ScholarPubMed
Beer, A. E., & Billingham, R. E. (1978). Immunoregulatory aspects of pregnancy. Fed. Proc., 37, 2374–8.Google ScholarPubMed
Benson, G. V., Lim, H., Paria, B. C.et al. (1996). Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development, 122, 2687–96.Google ScholarPubMed
Bergstein, I., Eisenberg, L. M., Bhalerao, L.et al. (1997). Isolation of two novel WNT genes, WNT14 and WNT15, one of which (WNT15) is closely linked to WNT3 on human chromosome 17q21. Genomics, 46, 450–8.CrossRefGoogle ScholarPubMed
Bhatt, H., Brunet, L. J. & Stewart, C. L. (1991). Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc. Natl. Acad. Sci. U.S.A., 88, 11408–12.CrossRefGoogle ScholarPubMed
Bienz, M. & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell, 103, 311–20.CrossRefGoogle ScholarPubMed
Bonventre, J. V., Huang, Z., Taheri, M. R.et al. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature, 390, 622–5.CrossRefGoogle ScholarPubMed
Brunet, L. J., McMahon, J. A., McMahon, A. P. & Harland, R. M. (1998). Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science, 280, 1455–7.CrossRefGoogle ScholarPubMed
Cadigan, K. M. & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes Dev., 11, 3286–3305.CrossRefGoogle ScholarPubMed
Carson, D. D., Bagchi, I., Dey, S. K.et al. (2000). Embryo implantation. Dev. Biol., 223, 217–37.CrossRefGoogle ScholarPubMed
Chakraborty, I., Das, S. K., Wang, J. & Dey, S. K. (1996). Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the periimplantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J. Mol. Endocrinol., 16, 107–22.CrossRefGoogle Scholar
Chard, T. (1995). Cytokines in implantation. Hum. Reprod. Update, 1, 385–96.CrossRefGoogle ScholarPubMed
Chobotova, K., Spyropoulou, I., Carver, J.et al. (2002). Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech. Dev., 119, 137–44.CrossRefGoogle ScholarPubMed
Daikokua, T., Guo, Y., Rieseqijk, A.et al. (2004). Uterine Msx-1 and Wnt signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: Evidence for a novel cytokine-homeobox-Wnt signaling in implantation. Mol. Endocrinol., 18, 1238–50.CrossRefGoogle Scholar
Das, S. K., Tsukamura, H., Paria, B. C., Andrews, G. K. & Dey, S. K. (1994a). Differential expression of epidermal growth factor receptor (EGF-R) gene and regulation of EGF-R bioactivity by progesterone and estrogen in the adult mouse uterus. Endocrinology, 134, 971–81.CrossRefGoogle Scholar
Das, S. K., Wang, X. N., Paria, B. C.et al. (1994b). Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development, 120, 1071–83.Google Scholar
Das, S. K., Chakraborty, I., Paria, B. C.et al. (1995). Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol. Endocrinol., 9, 691–705.Google ScholarPubMed
Das, S. K., Das, N., Wang, J.et al. (1997). Expression of betacellulin and epiregulin genes in the mouse uterus temporally by the blastocyst solely at the site of its apposition is coincident with the ‘window’ of implantation. Dev. Biol., 190, 178–90.CrossRefGoogle ScholarPubMed
Das, S. K., Lim, H., Paria, B. C. & Dey, S. K. (1999). Cyclin D3 in the mouse uterus is associated with the decidualization process during early pregnancy. J. Mol. Endocrinol., 22, 91–101.CrossRefGoogle ScholarPubMed
De Feo, V. (1967). Decidualization. In , R. M. Wynn, ed., Cellular Biology of the Uterus. Amsterdam: North-Holland, pp. 191–290.Google Scholar
Dey, S. K. (1996). Implantation. In Adashi, R. J. & Rosenwaks, E. Y., eds., Reproductive Endocrinology, Surgery and Technology. New York: Lippincott-Raven, pp. 421–34.Google Scholar
Dinchuk, J. E., Car, B. D., Focht, R. J.et al. (1995). Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature, 378, 406–9.CrossRefGoogle ScholarPubMed
Ernst, M., Inglese, M., Waring, P.et al. (2001). Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J. Exp. Med., 194, 189–203.CrossRefGoogle ScholarPubMed
Escary, J. L., Perreau, J., Dumenil, D., Ezine, S. & Brulet, P. (1993). Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature, 363, 361–4.CrossRefGoogle ScholarPubMed
Fujita, M., Ogawa, S., Fukuoka, H.et al. (2002). Differential expression of secreted frizzled-related protein 4 in decidual cells during pregnancy. J. Mol. Endocrinol., 28, 213–23.CrossRefGoogle ScholarPubMed
Gavin, B. J., McMahon, J. A. & McMahon, A. P. (1990). Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development. Genes Dev., 4, 2319–32.CrossRefGoogle ScholarPubMed
Gendron, R. L., Paradis, H., Hsieh-Li, H. M.et al. (1997). Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol. Reprod., 56, 1097–105.CrossRefGoogle ScholarPubMed
Giles, R. H., Es, J. H. & Clevers, H. (2003.). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta, 1653, 1–24.Google Scholar
Hambartsoumian, E. (1998). Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am. J. Reprod. Immunol., 39, 137–43.CrossRefGoogle ScholarPubMed
Hogan, B. L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev., 10, 1580–94.CrossRefGoogle ScholarPubMed
Hogan, B., Constantini, F. & Lacy, E. (1994). Manipulating the Mouse Embryo: A Laboratory Manual. New York: Cold Spring Harbor Press.Google Scholar
Hsieh-Li, H. M., Witte, D. P., Weinstein, M.et al. (1995). Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development, 121, 1373–85.Google ScholarPubMed
Huet, Y. M., Andrews, G. K. & Dey, S. K. (1989). Modulation of c-myc protein in the mouse uterus during pregnancy and by steroid hormones. Prog. Clin. Biol. Res., 294, 401–12.Google ScholarPubMed
Ingham, P. W. (1998). Transducing Hedgehog: the story so far. EMBO J., 17, 3505–11.CrossRefGoogle ScholarPubMed
Israel, D. I., Nove, J., Kerns, K. M.et al. (1996). Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors, 13, 291–300.CrossRefGoogle ScholarPubMed
Iwamoto, R., Yamazaki, S., Asakura, M.et al. (2003). Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. U.S.A., 100, 3221–6.CrossRefGoogle ScholarPubMed
Kawabata, M., Imamura, T. & Miyazono, K. (1998). Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev., 9, 49–61.CrossRefGoogle ScholarPubMed
Kennedy, T. G. (1985). Evidence for the involvement of prostaglandins throughout the decidual cell reaction in the rat. Biol. Reprod. 33, 140–6.CrossRefGoogle ScholarPubMed
Kingsley, D. M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev., 8, 133–46.CrossRefGoogle ScholarPubMed
Kirby, D. R. S. & Cowell, T. (1968). Trophoblast – host interactions. In Fleischmeyer, B. R., ed., Epithelial–Mesenchymal Interactions. Baltimore: Williams & Wilkins, pp. 64–77.Google Scholar
Kishimoto, T., Taga, T. & Akira, S. (1994). Cytokine signal transduction. Cell, 76, 253–62.CrossRefGoogle ScholarPubMed
Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A. & Evans, R. M. (1992). Convergence of 9-cis retinoic acid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors. Nature, 358, 771–4.CrossRefGoogle ScholarPubMed
Kliewer, S. A., Forman, B. M., Blumberg, B.et al. (1994). Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. U.S.A., 91, 7355–9.CrossRefGoogle ScholarPubMed
Krumlauf, R. (1994). Hox genes in vertebrate development. Cell, 78, 191–201.CrossRefGoogle ScholarPubMed
Langenbach, R., Morham, S. G., Tiano, H. F.et al. (1995). Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell, 83, 483–92.CrossRefGoogle ScholarPubMed
Leach, R. E., Khalifa, R., Ramirez, N. D.et al. (1999). Multiple roles for heparin-binding epidermal growth factor-like growth factor are suggested by its cell-specific expression during the human endometrial cycle and early placentation. J. Clin. Endocrinol. Metab., 84, 3355–63.Google ScholarPubMed
Lim, H. & Dey, S. K. (2000). PPAR delta functions as a prostacyclin receptor in blastocyst implantation. Trends Endocrinol. Metab., 11, 137–42.CrossRefGoogle ScholarPubMed
Lim, H., Paria, B. C., Das, S. K.et al. (1997). Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell, 91, 197–208.CrossRefGoogle ScholarPubMed
Lim, H., Das, S. K. & Dey, S. K. (1998). erbB genes in the mouse uterus: cell-specific signaling by epidermal growth factor (EGF) family of growth factors during implantation. Dev. Biol., 204, 97–110.CrossRefGoogle ScholarPubMed
Lim, H., Gupta, R. A., Ma, W. G.et al. (1999a). Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev., 13, 1561–74.CrossRefGoogle Scholar
Lim, H., Ma, L., Ma, W. G., Maas, R. L. & Dey, S. K. (1999b). Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol. Endocrinol., 13, 1005–17.CrossRefGoogle Scholar
Lim, H., Song, H., Paria, B. C.et al. (2002). Molecules in blastocyst implantation: uterine and embryonic perspectives. Vitam. Horm., 64, 43–76.CrossRefGoogle ScholarPubMed
Lloyd, S., Fleming, T. P. & Collins, J. E. (2003). Expression of Wnt genes during mouse pre-implantation development. Gene Expr. Patterns, 3, 309–12.CrossRefGoogle Scholar
Luetteke, N. C., Qiu, T. H., Peiffer, R. L., et al. (1993). TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell, 73, 263–78.CrossRefGoogle ScholarPubMed
Luetteke, N. C., Qiu, T. H., Fenton, S. E.et al. (1999). Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development, 126, 2739–50.Google ScholarPubMed
Ma, W. G., Song, H., Das, S. K., Paria, B. C. & Dey, S. K. (2003). Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. U.S.A., 100, 2963–8.CrossRefGoogle ScholarPubMed
Mangelsdorf, D. J. & Evans, R. M. (1995). The RXR heterodimers and orphan receptors. Cell, 83, 841–50.CrossRefGoogle ScholarPubMed
Martin, K. L., Barlow, D. H. & Sargent, I. L. (1998). Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum. Reprod., 13, 1645–52.CrossRefGoogle ScholarPubMed
Massague, J. & Chen, Y. G. (2000). Controlling TGF-beta signaling. Genes Dev., 14, 627–44.Google ScholarPubMed
McLaren, A. (1990). The Embryo. In Austin, C. R., ed., Reproduction in Mammals. Cambridge: Cambridge University Press, pp. 1–26.Google Scholar
Mead, R. A. (1993). Embryonic diapause in vertebrates. J. Exp. Zool. 266, 629–41.CrossRefGoogle ScholarPubMed
Michalik, L., Desvergne, B., Tan, N. S.et al. (2001). Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and (PPAR)beta mutant mice. J. Cell Biol., 154, 799–814.CrossRefGoogle Scholar
Negishi, M., Sugimoto, Y. & Ichikawa, A. (1995). Molecular mechanisms of diverse actions of prostanoid receptors. Biochim. Biophys. Acta, 1259, 109–19.CrossRefGoogle ScholarPubMed
Ni, H., Sun, T., Ding, N. Z., Ma, X. H. & Yang, Z. M. (2002). Differential expression of microsomal prostaglandin E synthase at implantation sites and in decidual cells of mouse uterus. Biol. Reprod., 67, 351–8.CrossRefGoogle ScholarPubMed
Ni, H., Sun, T., Ma, X. H. & Yang, Z. M. (2003). Expression and regulation of cytosolic prostaglandin E synthase in mouse uterus during the periimplantation period. Biol. Reprod., 68, 744–50.CrossRefGoogle Scholar
Nusse, R. (2003). Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development, 130, 5297–305.CrossRefGoogle ScholarPubMed
Onagbesan, O. M., Bruggeman, V., As, P.et al. (2003). BMPs and BMPRs in chicken ovary and effects of BMP-4 and -7 on granulosa cell proliferation and progesterone production in vitro. Am. J. Physiol. Endocrinol. Metab., 285, E973–83.CrossRefGoogle ScholarPubMed
Paria, B. C., Huet-Hudson, Y. M. & Dey, S. K. (1993). Blastocyst's state of activity determines the ‘window’ of implantation in the receptive mouse uterus. Proc. Natl. Acad. Sci. U.S.A., 90, 10159–62.CrossRefGoogle ScholarPubMed
Paria, B. C., Ma, W., Tan, J.et al. (2001). Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc. Natl. Acad. Sci. U.S.A., 98, 1047–52.CrossRefGoogle ScholarPubMed
Paria, B. C., Reese, J., Das, S. K. & Dey, S. K. (2002). Deciphering the crosstalk of implantation: advances and challenges. Science, 296, 2185–8.CrossRefGoogle Scholar
Peters, J. M., Lee, S. S., Li, W.et al. (2000). Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta (delta). Mol. Cell. Biol., 20, 5119–28.CrossRefGoogle Scholar
Petraglia, F., Santuz, M., Florio, P.et al. (1998). Paracrine regulation of human placenta: control of hormonogenesis. J. Reprod. Immunol., 39, 221–33.CrossRefGoogle ScholarPubMed
Pollard, J. W., Hunt, J. S., Wiktor-Jedrzejczak, W. & Stanley, E. R. (1991). A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev. Biol., 148, 273–83.CrossRefGoogle ScholarPubMed
Psychoyos, A. (1973a). Endocrine control of egg implantation. In Greep, R. O. & Geiger, S. R., eds. Handbook of Physiology. Washington, DC: American Physiological Society, pp. 187–215.Google Scholar
Psychoyos, A. (1973b). Hormonal control of ovoimplantation. Vitam. Horm., 31, 201–56.CrossRefGoogle Scholar
Reddy, S. T. & Herschman, H. R. (1997). Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells. J. Biol. Chem., 272, 3231–7.CrossRefGoogle ScholarPubMed
Robb, L., Li, R., Hartley, L.et al. (1998). Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat. Med., 4, 303–8.CrossRefGoogle Scholar
Roberts, R. M., Ealy, A. D., Alexenko, A. P., Han, C. S. & Ezashi, T. (1999). Trophoblast interferons. Placenta, 20, 259–64.CrossRefGoogle ScholarPubMed
Salamonsen, L. A., Doughton, B. W. & Findlay, J. K. (1986). The effects of the pre-implantation blastocyst in vivo and in vitro on protein synthesis and secretion by cultured epithelial cells from sheep endometrium. Endocrinology, 119, 622–8.CrossRefGoogle Scholar
Sharkey, A. (1998). Cytokines and implantation. Rev. Reprod., 3, 52–61.CrossRefGoogle ScholarPubMed
Smith, W. C. (1999). TGF beta inhibitors. New and unexpected requirements in vertebrate development. Trends Genet., 15, 3–5.CrossRefGoogle ScholarPubMed
Smith, W. L., Garavito, R. M. & DeWitt, D. L. (1996). Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem., 271, 33157–60.CrossRefGoogle ScholarPubMed
Song, H., Lim, H., Das, S. K., Paria, B. C. & Dey, S. K. (2000). Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol. Endocrinol., 14, 1147–61.CrossRefGoogle ScholarPubMed
Song, H., Lim, H., Paria, B. C.et al. (2002). Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development, 129, 2879–89.Google ScholarPubMed
Spencer, A. G., Woods, J. W., Arakawa, T., Singer, I. I. & Smith, W. L. (1998). Subcellular localization of prostaglandin endoperoxide H synthases-1 and -2 by immunoelectron microscopy. J. Biol. Chem. 273, 9886–93.CrossRefGoogle ScholarPubMed
Stewart, C. L. & Cullinan, E. B. (1997). Pre-implantation development of the mammalian embryo and its regulation by growth factors. Dev. Genet., 21, 91–101.3.0.CO;2-D>CrossRefGoogle Scholar
Stewart, C. L., Kaspar, P., Brunet, L. J.et al. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature, 359, 76–9.CrossRefGoogle ScholarPubMed
Takano, T., Panesar, M., Papillon, J. & Cybulsky, A. V. (2000). Cyclooxygenases-1 and 2 couple to cytosolic but not group IIA phospholipase A2 in COS-1 cells. Prostaglandins Other Lipid Mediat., 60, 15–26.CrossRefGoogle Scholar
Tan, J., Raja, S., Davis, M. K.et al. (2002). Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech. Dev., 111, 99–113.CrossRefGoogle ScholarPubMed
Taylor, H. S., Arici, A., Olive, D. & Igarashi, P. (1998). HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J. Clin. Invest., 101, 1379–84.CrossRefGoogle ScholarPubMed
Uozumi, N., Kume, K., Nagase, T.et al. (1997). Role of cytosolic phospholipase A2 in allergic response and parturition. Nature, 390, 618–22.CrossRefGoogle ScholarPubMed
Wang, H., Ma, W. G., Tejada, L.et al. (2003). Rescue of female infertility from the loss of cyclooxygenase-2 by compensatory upregulation of cyclooxygenase-1 is a function of genetic background. J. Biol. Chem., 279, 10649–58.CrossRefGoogle Scholar
Wilcox, A. J., Baird, D. D. & Weinberg, C. R. (1999). Time of implantation of the conceptus and loss of pregnancy. New Engl. J. Med., 340, 1796–99.CrossRefGoogle ScholarPubMed
Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev., 9, 2105–16.CrossRefGoogle ScholarPubMed
Wodarz, A. & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol., 14, 59–88.CrossRefGoogle ScholarPubMed
Yang, Z. M., Das, S. J., Wang, J.et al. (1997). Potential sites of prostaglandin actions in the periimplantation mouse uterus: differential expression and regulation of prostaglandin receptor genes. Biol. Reprod., 56, 368–79.CrossRefGoogle ScholarPubMed
Yao, M. W., Lim, H., Schust, D. J.et al. (2003). Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol. Endocrinol., 17, 610–27.CrossRefGoogle ScholarPubMed
Yoo, H. J., Barlow, D. H. & Mardon, H. J. (1997). Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev. Genet., 21, 102–8.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Yoshinaga, K. & Adams, C. E. (1966). Delayed implantation in the spayed, progesterone treated adult mouse. J. Reprod. Fertil., 12, 593–5.CrossRefGoogle ScholarPubMed
Zhang, H. & Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122, 977–86.Google ScholarPubMed
Zimmerman, L. B., Jesus-Escobar, J. M. & Harland, R. M. (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 86, 599–606.CrossRefGoogle ScholarPubMed
Kirby, D. R. S. (1965). The ‘invasiveness’ of the trophoblast. In , W. W. Park, ed., The Early Conceptus, Normal and Abnormal. Edinburgh: University of St Andrews Press, pp. 68–74.Google Scholar
Li, D. K., Liu, L. & Odouli, R. (2003). Exposure to non-steroidal anti-inflammatory drugs during pregnancy and risk of miscarriage: population based cohort study. BMJ, 327, 368.CrossRefGoogle ScholarPubMed
Song, H., Lim, H., Paria, B. C. et al. (2002). Cytosolic phospholipase A2alpha is crucial for ‘on-time’ embryo implantation that directs subsequent development. Development, 129, 2879–89 (Erratum in Development, 129, 3761).
Stone, S., Khamashta, M. A. & Nelson-Piercy, C. (2002). Nonsteroidal anti-inflammatory drugs and reversible female infertility: is there a link?Drug Safety, 25, 545–51.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×