Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T08:44:41.134Z Has data issue: false hasContentIssue false

7 - Evolution of the nuclear genome of ferns and lycophytes

Published online by Cambridge University Press:  11 August 2009

Takuya Nakazato
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, USA
Michael S. Barker
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, USA
Loren H. Rieseberg
Affiliation:
Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada and Department of Biology, Indiana University, Bloomington, IN 47405, USA
Gerald J. Gastony
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, USA
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

Analyses of gene expression and function, genetic networks, population polymorphisms, and genome organization at the whole genome level have enabled research on previously intractable questions (reviewed in Wolfe and Li, 2003). Among plant lineages, genomic approaches have been most widely applied in the angiosperms, where significant resources have been developed. Angiosperm studies utilizing genome scale analyses have made several important advances, including the identification of an extensive history of genome duplications (Blanc et al., 2003; Schlueter et al., 2004; Cui et al., 2006), progress in understanding flower development and evolution (Doust et al., 2005; Whibley et al., 2006), characterization of the genetics underlying speciation and adaptation (Bradshaw and Schemske, 2003; Rieseberg et al., 2003; Lai et al., 2005; Eyre-Walker, 2006), the identification and mapping of recombination hot spots (Drouaud et al., 2006), and the discovery and role of microRNAs (Bartel and Bartel, 2003; Bartel, 2004). Genomic analyses will undoubtedly continue to provide tests of longstanding questions and offer novel perspectives in biology. For example, modern genomic analyses are capable of explaining the origin of the exceptionally high chromosome numbers of homosporous ferns and lycophytes, a result that will shed light on eukaryotic genome organization and evolution.

Although there are rich biological and taxonomic resources for ferns and lycophytes, the genomics of these seed-free plants is still in its infancy, and the tools necessary for genomic studies lag behind those available for seed plants. The first homosporous fern linkage map was published only recently (Nakazato et al., 2006), whereas a large number of linkage maps for seed plants have accumulated since the 1980s

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, K. L., Cronn, R., Percifield, R., and Wendel, J. F. (2003). Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proceedings of the National Academy of Sciences of the United States of America, 100, 4649–4654.CrossRefGoogle ScholarPubMed
Ahn, S. and Tanksley, S. D. (1993). Comparative linkage maps of the rice and maize genomes. Proceedings of the National Academy of Sciences of the United States of America, 90, 7980–7984.CrossRefGoogle ScholarPubMed
Barker, M. S. and Hickey, R. J. (2006). A taxonomic revision of Caribbean Adiantopsis (Pteridaceae). Annals of the Missouri Botanical Garden, 93, 371–401.CrossRefGoogle Scholar
Barrington, D. S., Paris, C. A., and Ranker, T. A. (1986). Systematic inferences from spore and stomate size in the ferns. American Fern Journal, 76, 149–159.CrossRefGoogle Scholar
Bartel, B. and Bartel, D. P. (2003). MicroRNAs: at the root of plant development? Plant Physiology, 132, 709–717.CrossRefGoogle ScholarPubMed
Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.CrossRefGoogle ScholarPubMed
Bennetzen, J. L. (2002). Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica, 115, 29–36.CrossRefGoogle ScholarPubMed
Blanc, G. and Wolfe, K. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 16, 1667–1678.CrossRefGoogle ScholarPubMed
Blanc, G., Hokamp, K., and Wolfe, K. (2003). A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Research, 13, 137–144.CrossRefGoogle ScholarPubMed
Bradshaw, H. D. and Schemske, D. W. (2003). Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature, 426, 176–178.CrossRefGoogle Scholar
Brandes, A., Heslop-Harrison, J. S., Kamm, A., Kubis, S., Doudrick, R. S., and Schmidt, T. (1997). Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Molecular Biology, 33, 11–21.CrossRefGoogle ScholarPubMed
Chapman, R. H., Klekowski, E. J. J., and Selander, R. K. (1979). Homoeologous heterozygosity and recombination in the fern Pteridium aquilinum. Science, 204, 1207–1209.CrossRefGoogle ScholarPubMed
Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. Journal of the American Statistical Association, 94, 807–823.CrossRefGoogle Scholar
Cui, L. Y., Wall, P. K., Leebens-Mack, J. H., Lindsay, B. G., Soltis, D. E., Doyle, J. J., Soltis, P. S., et al. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16, 738–749.CrossRefGoogle ScholarPubMed
Doust, A. N., Devos, K. M., Gadberry, M. D., Gale, M. D., and Kellogg, E. A. (2005). The genetic basis for inflorescence variation between foxtail and green millet (Poaceae). Genetics, 169, 1659–1672.CrossRefGoogle Scholar
Drouaud, J., Camilleri, C., Bourguignon, P. Y., Canaguier, A., Berard, A., et al. (2006). Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots.” Genome Research, 16, 106–114.CrossRefGoogle Scholar
Eyre-Walker, A. (2006). The genomic rate of adaptive evolution. Trends in Ecology and Evolution, 21, 569–575.CrossRefGoogle ScholarPubMed
Flavell, R. (1980). The molecular characterization and organization of plant chromosomal DNA sequences. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 569–596.CrossRefGoogle Scholar
Gastony, G. J. (1990). Electrophoretic evidence for allotetraploidy with segregating heterozygosity in South African Pellaea rufa Tryon, A. F. (Adiantaceae). Annals of the Missouri Botanical Garden, 77, 306–313.CrossRefGoogle Scholar
Gastony, G. J. (1991). Gene silencing in a polyploid homosporous fern: paleopolyploidy revisited. Proceedings of the National Academy of Sciences of the United States of America, 88, 1602–1605.CrossRefGoogle Scholar
Gastony, G. J. and Darrow, D. C. (1983). Chloroplastic and cytosolic isozymes of the homosporous fern Athyrium filix-femina L. American Journal of Botany, 70, 1409–1415.CrossRefGoogle Scholar
Gastony, G. J. and Gottlieb, L. D. (1982). Evidence for genetic heterozygosity in a homosporous fern. American Journal of Botany, 69, 634–637.CrossRefGoogle Scholar
Gastony, G. J. and Gottlieb, L. D. (1985). Genetic variation in the homosporous fern Pellaea andromedifolia. American Journal of Botany, 72, 257–267.CrossRefGoogle Scholar
Gastony, G. J. and Windham, M. D. (1989). Species concepts in pteridophytes: the treatment and definition of agamosporous species. American Fern Journal, 79, 65–77.CrossRefGoogle Scholar
Gottlieb, L. D. (1982). Conservation and duplication of isozymes in plants. Science, 216, 373–380.CrossRefGoogle ScholarPubMed
Grant, V. (1981). Plant Speciation. New York: Columbia University Press.Google Scholar
Han, F. P., Fedak, G., Ouellet, T., and Liu, B. (2003). Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 46, 716–723.CrossRefGoogle ScholarPubMed
Haufler, C. H. (1987). Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. American Journal of Botany, 74, 953–966.CrossRefGoogle Scholar
Haufler, C. H. and Soltis, D. E. (1984). Obligate outcrossing in a homosporous fern: field confirmation of a laboratory prediction. American Journal of Botany, 71, 878–881.CrossRefGoogle Scholar
Haufler, C. H. and Soltis, D. E. (1986). Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. Proceedings of the National Academy of Sciences of the United States of America, 83, 4389–4393.CrossRefGoogle ScholarPubMed
Hawkins, J. S., Kim, H., Nason, J. D., Wing, R. A., and Wendel, J. F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Research, 16, 1252–1261.CrossRefGoogle ScholarPubMed
Hickok, L. G. (1978). Homoeologous chromosome pairing and restricted segregation in the fern Ceratopteris. American Journal of Botany, 65, 516–521.CrossRefGoogle Scholar
Hickok, L. G. and Klekowski, E. J. Jr. (1974). Inchoate speciation in Ceratopteris: an analysis of the synthesized hybrid C. richardii × C. pteridoides. Evolution, 28, 439–446.Google ScholarPubMed
Holsinger, K. E. (1987). Gametophytic self-fertilization in homosporous plants: development, evaluation, and application of a statistical method for evaluating its importance. American Journal of Botany, 74, 1173–1183.CrossRefGoogle Scholar
Kawai-Toyooka, H., Kuramoto, C., Orui, K., Motoyama, K., Kikuchi, K., Kanegae, T., and Wada, M. (2004). DNA interference: a simple and efficient gene-silencing system for high-throughput functional analysis in the fern Adiantum. Plant and Cell Physiology, 45, 1648–1657.CrossRefGoogle ScholarPubMed
Khandelwal, S. (1990). Chromosome evolution in the genus Ophioglossum L. Botanical Journal of the Linnean Society, 102, 205–217.CrossRefGoogle Scholar
Klekowski, E. J. Jr. and Baker, H. G. (1966). Evolutionary significance of polyploidy in the Pteridophyta. Science, 153, 305–307.CrossRefGoogle ScholarPubMed
Klink, V. P. and Wolniak, S. M. (2000). The efficacy of RNAi in the study of the plant cytoskeleton. Journal of Plant Growth Regulation, 19, 371–384.CrossRefGoogle Scholar
Lagercrantz, U. and Lydiate, D. J. (1996). Comparative genome mapping in Brassica. Genetics, 144, 1903–1910.Google ScholarPubMed
Lai, Z., Nakazato, T., Salmaso, M., Burke, J. M., Tang, S. X., Knapp, S. J., and Rieseberg, L. H. (2005). Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics, 171, 291–303.CrossRefGoogle ScholarPubMed
Leitch, I. J., Soltis, D. E., Soltis, P. S., and Bennett, M. D. (2005). Evolution of DNA amounts across land plants (Embryophyta). Annals of Botany, 95, 207–217.CrossRefGoogle Scholar
Liu, B. and Wendel, J. F. (2003). Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution, 29, 365–379.CrossRefGoogle ScholarPubMed
Löve, Á., Löve, D., and Pichi-Sermolli, R. E. G. (1977). Cytotaxonomical Atlas of the Pteridophyta. Vaduz: J. Cramer.Google Scholar
Lynch, M. and Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155.CrossRefGoogle ScholarPubMed
Madlung, A., Masuelli, R. W., Watson, B., Reynolds, S. H., Davison, J., and Comai, L. (2002). Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiology, 129, 733–746.CrossRefGoogle ScholarPubMed
Manton, I. (1950). Problems of Cytology and Evolution in the Pteridophyta. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Masterson, J. (1994). Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science, 264, 421–424.CrossRefGoogle ScholarPubMed
McGrath, J. M. and Hickok, L. G. (1999). Multiple ribosomal RNA gene loci in the genome of the homosporous fern Ceratopteris richardii. Canadian Journal of Botany, 77, 1199–1202.CrossRefGoogle Scholar
McGrath, J. M., Hickok, L. G., and Pichersky, E. (1994). Assessment of gene copy number in the homosporous ferns Ceratopteris thalictroides and C. richardii (Parkeriaceae) by restriction fragment length polymorphisms. Plant Systematics and Evolution, 189, 203–210.CrossRefGoogle Scholar
Nakazato, T., Jung, M.-K., Housworth, E. A., Rieseberg, L. H., and Gastony, G. J. (2006). Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics, 173, 1585–1597.CrossRefGoogle ScholarPubMed
Obermayer, R., Leitch, I. J., Hanson, L., and Bennett, M. D. (2002). Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Annals of Botany, 90, 209–217.CrossRefGoogle ScholarPubMed
Osborn, T. C., Pires, J. C., Birchler, J. A., Auger, D. L., Chen, Z. J., Lee, H. S., Comai, L., et al. (2003). Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 19, 141–147.CrossRefGoogle ScholarPubMed
Panopoulou, G. and Poustka, A. J. (2005). Timing and mechanism of ancient vertebrate genome duplications: the adventure of a hypothesis. Trends in Genetics, 21, 559–567.CrossRefGoogle ScholarPubMed
Pichersky, E., Soltis, D. E., and Soltis, P. S. (1990). Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. Proceedings of the National Academy of Sciences of the United States of America, 87, 195–199.CrossRefGoogle ScholarPubMed
Pires, J. C., Zhao, J. W., Schranz, M. E., Leon, E. J., Quijada, P. A., Lukens, L. N., and Osborn, T. C. (2004). Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biological Journal of the Linnean Society, 82, 675–688.CrossRefGoogle Scholar
Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409, 618–622.CrossRefGoogle ScholarPubMed
Pryer, K. M., Schuettpelz, E., Wolf, P. G., Schneider, H., Smith, A. R., and Cranfill, R. (2004). Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91, 1582–1598.CrossRefGoogle ScholarPubMed
Rabinowicz, P. D., Citek, R., Budiman, M. A., Nunberg, A., Bedell, J. A., Lakey, N., O'Shaughnessy, A. L., et al. (2005). Differential methylation of genes and repeats in land plants. Genome Research, 15, 1431–1440.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Raymond, O., Rosenthal, D. M., Lai, Z., Livingstone, K., Nakazato, T., Durphy, J. L., et al. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 301, 1211–1216.CrossRefGoogle Scholar
Rigby, S. J. (1975). Meiosis and sporogenesis in a haploid plant of Pellaea glabella var. occidentalis. Canadian Journal of Botany, 53, 894–900.CrossRefGoogle Scholar
SanMiguel, P. and Bennetzen, J. L. (1998). Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany, 82, 37–44.CrossRefGoogle Scholar
SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., and Bennetzen, J. L. (1998). The paleontology of intergene retrotransposons of maize. Nature Genetics, 20, 43–45.CrossRefGoogle ScholarPubMed
SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., MelakeBerhan, A., Springer, P. S., et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science, 274, 765–768.CrossRefGoogle ScholarPubMed
Schlueter, J. A., Dixon, P., Granger, C., Grant, D., Clark, L., Doyle, J. J., and Shoemaker, R. C. (2004). Mining EST databases to resolve evolutionary events in major crop species. Genome, 47, 868–876.CrossRefGoogle ScholarPubMed
Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallon, S., and Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553–557.CrossRefGoogle ScholarPubMed
Schwilk, D. W. and Ackerly, D. D. (2001). Flammability and serotiny as strategies: correlated evolution in pines. Oikos, 94, 326–336.CrossRefGoogle Scholar
Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., and Levy, A. A. (2001). Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 13, 1749–1759.CrossRefGoogle ScholarPubMed
Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683–690.Google Scholar
Shirasu, K., Schulman, A. H., Lahaye, T., and Schulze-Lefert, P. (2000). A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Research, 10, 908–915.CrossRefGoogle ScholarPubMed
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., and Wolf, P. C. (2006). A classification for extant ferns. Taxon, 55, 705–731.CrossRefGoogle Scholar
Soltis, D. E. (1986). Genetic evidence for diploidy in Equisetum. American Journal of Botany, 73, 908–913.CrossRefGoogle Scholar
Soltis, D. E. and Soltis, P. S. (1987). Polyploidy and breeding systems in homosporous Pteridophyta: a reevaluation. American Naturalist, 130, 219–232.CrossRefGoogle Scholar
Soltis, D. E. and Soltis, P. S. (1990). Isozyme evidence for ancient polyploidy in primitive angiosperms. Systematic Botany, 15, 328–337.CrossRefGoogle Scholar
Soltis, P. S., Soltis, D. E., Savolainen, V., Crane, P. R., and Barraclough, T. G. (2002). Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences of the United States of America, 99, 4430–4435.CrossRefGoogle ScholarPubMed
Song, K., Lu, P., Tang, K., and Osborn, T. (1995). Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of the National Academy of Sciences of the United States of America, 92, 7719–7723.CrossRefGoogle ScholarPubMed
Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouze, P., and Peer, Y. (2005). EST data suggest that poplar is an ancient polyploid. New Phytologist, 167, 165–170.CrossRefGoogle ScholarPubMed
Stout, S. C., Clark, G. B., Archer-Evans, S., and Roux, S. J. (2003). Rapid and efficient suppression of gene expression in a single-cell model system, Ceratopteris richardii. Plant Physiology, 131, 1165–1168.CrossRefGoogle Scholar
Swigonova, Z., Lai, J. S., Ma, J. X., Ramakrishna, W., Llaca, V., Bennetzen, J. L., and Messing, J. (2004). Close split of sorghum and maize genome progenitors. Genome Research, 14, 1916–1923.CrossRefGoogle ScholarPubMed
Tryon, A. F. (1968). Comparison of sexual and apogamous races in the fern genus Pellaea. Rhodora, 70, 1–24.Google Scholar
Vicient, C. M., Suoniemi, A., Anamthamat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E., and Schulman, A. H. (1999). Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell, 11, 1769–1784.CrossRefGoogle ScholarPubMed
Wagner, W. H., Jr. and Wagner, F. S. (1980). Polyploidy in Pteridophytes. In Polyploidy, Biological Relevance: Proceedings of the International Conference on Polyploidy, Biological Relevance, ed. Lewis, W. H.. New York: Plenum Press, pp. 199–214.CrossRefGoogle Scholar
Walker, T. G. (1985). Cytotaxonomical studies of the ferns of Trinidad 2. The cytology and taxonomic implications. Bulletin of the British Museum of Natural History (Botany), 13, 149–249.Google Scholar
Wendel, J. F. and Cronn, R. C. (2003). Polyploidy and the evolutionary history of cotton. Advances in Agronomy, 78, 139–186.CrossRefGoogle Scholar
Werth, C. R. and Windham, M. D. (1991). A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. American Naturalist, 137, 515–526.CrossRefGoogle Scholar
Whibley, A. C., Langlade, N. B., Andalo, C., Hanna, A. I., Bangham, A., Thebaud, C., and Coen, E. (2006). Evolutionary paths underlying flower color variation in Antirrhinum. Science, 313, 963–966.CrossRefGoogle ScholarPubMed
Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E., and Keller, B. (2001). Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant Journal, 26, 307–316.CrossRefGoogle ScholarPubMed
Wolf, P. G., Haufler, C. H., and Sheffield, E. (1987). Electrophoretic evidence for genetic diploidy in the bracken fern (Pteridium aquilinum). Science, 236, 947–949.CrossRefGoogle Scholar
Wolfe, K. H. and Li, W.-H. (2003). Molecular evolution meets the genomics revolution. Nature Genetics, 33, 255–265.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×