Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T17:23:04.063Z Has data issue: false hasContentIssue false

13 - Circadian Rhythms and Cardiac Function

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

Circadian clocks in all tissues confer temporal organization to the physiology and behavior of organisms. Rhythms of the cardiovascular system have been scrutinized because of the morning peak of adverse cardiovascular events and because night and rotating shift work have been associated with heart disease and biomarkers of elevated cardiometabolic risk. Animal models support the important role that the clock plays in the heart. External disruptions such as jetlag and internal disruptions such as loss of clock function contribute to poor heart health. In this chapter, we review key findings from animal models of circadian disruption and from experiments in humans designed to isolate the effects of the circadian clock on cardiovascular physiology.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 285 - 309
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibhai, F. J., Reitz, C. J., Peppler, W. T., Basu, P., Sheppard, P., Choleris, E., Bakovic, M., & Martino, T. A. (2018). Female ClockΔ19/Δ19 mice are protected from the development of age-dependent cardiomyopathy. Cardiovasc Res, 114(2), 259271.Google Scholar
Alibhai, F. J., Tsimakouridze, E. V., Chinnappareddy, N., Wright, D. C., Billia, F., O’Sullivan, M. L., Pyle, W. G., Sole, M. J., & Martino, T. A. (2014). Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res, 114(11), 17131722.CrossRefGoogle ScholarPubMed
Ammirati, E., Cristell, N., Cianflone, D., Vermi, A. C., Marenzi, G., De Metrio, M., Uren, N. G., Hu, D., Ravasi, T., Maseri, A., & Cannistraci, C. V. (2013). Questing for circadian dependence in ST-segment-elevation acute myocardial infarction: A multicentric and multiethnic study. Circ Res, 112(10), e110–114.CrossRefGoogle ScholarPubMed
Ando, H., Kumazaki, M., Motosugi, Y., Ushijima, K., Maekawa, T., Ishikawa, E., & Fujimura, A. (2011). Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology, 152(4), 13471354.Google Scholar
Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., Schutz, G., & Schibler, U. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 289(5488), 23442347.Google Scholar
Baydas, G., Gursu, M. F., Cikim, G., Canpolat, S., Yasar, A., Canatan, H., & Kelestimur, H. (2002). Effects of pinealectomy on the levels and the circadian rhythm of plasma homocysteine in rats. J Pineal Res, 33(3), 151155.CrossRefGoogle ScholarPubMed
Bowles, N. P., Thosar, S. S., Herzig, M. X., & Shea, S. A. (2018). Chronotherapy for hypertension. Curr Hypertens Rep, 20(11), 97.Google Scholar
Bray, M. S., Shaw, C. A., Moore, M. W., Garcia, R. A., Zanquetta, M. M., Durgan, D. J., Jeong, W. J., Tsai, J. Y., Bugger, H., Zhang, D., Rohrwasser, A., Rennison, J. H., Dyck, J. R., Litwin, S. E., Hardin, P. E., Chow, C. W., Chandler, M. P., Abel, E. D., & Young, M. E. (2008). Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol, 294(2), H1036–1047.Google Scholar
Brito, L. C., Marin, T. C., Azevedo, L., Rosa-Silva, J. M., Shea, S. A., & Thosar, S. S. (2022). Chronobiology of exercise: Evaluating the best time to exercise for greater cardiovascular and metabolic benefits. Compr Physiol, 12(3), 36213639.CrossRefGoogle ScholarPubMed
Bunger, M. K., Wilsbacher, L. D., Moran, S. M., Clendenin, C., Radcliffe, L. A., Hogenesch, J. B., Simon, M. C., Takahashi, J. S., & Bradfield, C. A. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7), 10091017.Google Scholar
Butler, M. P., Smales, C., Wu, H., Hussain, M. V., Mohamed, Y. A., Morimoto, M., & Shea, S. A. (2015). The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. Sleep, 38(11), 17931801.CrossRefGoogle ScholarPubMed
Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Small mammalian animal models of heart disease. Am J Cardiovasc Dis, 6(3), 7080.Google ScholarPubMed
Campos, L. A., Bueno, C., Barcelos, I. P., Halpern, B., Brito, L. C., Amaral, F. G., Baltatu, O. C., & Cipolla-Neto, J. (2020). Melatonin therapy improves cardiac autonomic modulation in pinealectomized patients. Front Endocrinol (Lausanne), 11, 239.Google Scholar
Castanon-Cervantes, O., Wu, M., Ehlen, J. C., Paul, K., Gamble, K. L., Johnson, R. L., Besing, R. C., Menaker, M., Gewirtz, A. T., & Davidson, A. J. (2010). Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol, 185(10), 57965805.Google Scholar
Castro, N., Diana, J., Blackwell, J., Faulkner, J., Lark, S., Skidmore, P., Hamlin, M., Signal, L., Williams, M. A., & Stoner, L. 2021. Social jetlag and cardiometabolic risk in preadolescent children. Front Cardiovasc Med, 8, 705169.Google Scholar
Chellappa, S. L., Vujovic, N., Williams, J. S., & Scheer, F. (2019). Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol Metab, 30(10), 767779.Google Scholar
Chen, S., Redfors, B., Crowley, A., Thiele, H., Eitel, I., Ben-Yehuda, O., Gkargkoulas, F., Mehdipoor, G., & Stone, G. W. (2021). Relationship between primary percutaneous coronary intervention time of day, infarct size, microvascular obstruction and prognosis in ST-segment elevation myocardial infarction. Coron Artery Dis, 32(4), 267274.CrossRefGoogle ScholarPubMed
Coomans, C. P., van den Berg, S. A., Lucassen, E. A., Houben, T., Pronk, A. C., van der Spek, R. D., Kalsbeek, A., Biermasz, N. R., Willems van Dijk, K., Romijn, J. A., & Meijer, J. H. (2013). The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes, 62(4), 11021108.Google Scholar
Cox, K. H., & Takahashi, J. S. (2019). Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol, 63(4), R93R102.CrossRefGoogle ScholarPubMed
Crosby, P., Hamnett, R., Putker, M., Hoyle, N. P., Reed, M., Karam, C. J., Maywood, E. S., Stangherlin, A., Chesham, J. E., Hayter, E. A., Rosenbrier-Ribeiro, L., Newham, P., Clevers, H., Bechtold, D. A., & O’Neill, J. S. (2019). Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell, 177(4), 896909 e820.CrossRefGoogle ScholarPubMed
Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 14(23), 29502961.CrossRefGoogle ScholarPubMed
De Villiers, C., & Riley, P. R. (2020). Mouse models of myocardial infarction: Comparing permanent ligation and ischaemia-reperfusion. Dis Model Mech, 13(11), dmm046565.Google Scholar
Degaute, J. P., van de Borne, P., Linkowski, P., & Van Cauter, E. (1991). Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension, 18(2), 199210.CrossRefGoogle ScholarPubMed
Dierickx, P., Zhu, K., Carpenter, B. J., Jiang, C., Vermunt, M. W., Xiao, Y., Luongo, T. S., Yamamoto, T., Marti-Pamies, I., Mia, S., Latimer, M., Diwan, A., Zhao, J., Hauck, A. K., Krusen, B., Nguyen, H. C. B., Blobel, G. A., Kelly, D. P., Pei, L., … Lazar, M. A. (2022). Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD(+) biosynthesis and sustain cardiac function. Nat Cardiovasc Res, 1(1), 4558.Google Scholar
Duffy, J. F., Cain, S. W., Chang, A. M., Phillips, A. J., Munch, M. Y., Gronfier, C., Wyatt, J. K., Dijk, D. J., Wright, K. P. Jr., & Czeisler, C. A. (2011). Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci USA, 108(Suppl 3), 1560215608.Google Scholar
Durgan, D. J., Hotze, M. A., Tomlin, T. M., Egbejimi, O., Graveleau, C., Abel, E. D., Shaw, C. A., Bray, M. S., Hardin, P. E., & Young, M. E. (2005). The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol, 289(4), H1530H1541.CrossRefGoogle ScholarPubMed
Durgan, D. J., Pat, B. M., Laczy, B., Bradley, J. A., Tsai, J. Y., Grenett, M. H., Ratcliffe, W. F., Brewer, R. A., Nagendran, J., Villegas-Montoya, C., Zou, C., Zou, L., Johnson, R. L. Jr., Dyck, J. R., Bray, M. S., Gamble, K. L., Chatham, J. C., & Young, M. E. (2011). O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J Biol Chem, 286(52), 4460644619.Google Scholar
Durgan, D. J., Pulinilkunnil, T., Villegas-Montoya, C., Garvey, M. E., Frangogiannis, N. G., Michael, L. H., Chow, C. W., Dyck, J. R., & Young, M. E. (2010). Short communication: Ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res, 106(3), 546550.CrossRefGoogle ScholarPubMed
Durgan, D. J., Trexler, N. A., Egbejimi, O., McElfresh, T. A., Suk, H. Y., Petterson, L. E., Shaw, C. A., Hardin, P. E., Bray, M. S., Chandler, M. P., Chow, C. W., & Young, M. E. (2006). The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J Biol Chem, 281(34), 2425424269.Google Scholar
Durgan, D. J., Tsai, J. Y., Grenett, M. H., Pat, B. M., Ratcliffe, W. F., Villegas-Montoya, C., Garvey, M. E., Nagendran, J., Dyck, J. R., Bray, M. S., Gamble, K. L., Gimble, J. M., & Young, M. E. (2011). Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int, 28(3), 187203.CrossRefGoogle ScholarPubMed
Eckle, T., Hartmann, K., Bonney, S., Reithel, S., Mittelbronn, M., Walker, L. A., Lowes, B. D., Han, J., Borchers, C. H., Buttrick, P. M., Kominsky, D. J., Colgan, S. P., & Eltzschig, H. K. (2012). Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med, 18(5), 774782.Google Scholar
Fan, M., Sun, D., Zhou, T., Heianza, Y., Lv, J., Li, L., & Qi, L. (2020). Sleep patterns, genetic susceptibility, and incident cardiovascular disease: A prospective study of 385 292 UK biobank participants. Eur Heart J, 41(11), 11821189.Google Scholar
Feng, H. Z., & Jin, J. P. (2018). A protocol to study ex vivo mouse working heart at human-like heart rate. J Mol Cell Cardiol, 114, 175184.Google Scholar
Fournier, S., Eeckhout, E., Mangiacapra, F., Trana, C., Lauriers, N., Beggah, A. T., Monney, P., Cook, S., Bardy, D., Vogt, P., & Muller, O. (2012). Circadian variations of ischemic burden among patients with myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J, 163(2), 208213.Google Scholar
Fujino, Y., Iso, H., Tamakoshi, A., Inaba, Y., Koizumi, A., Kubo, T., Yoshimura, T., & Japanese Collaborative Cohort Study Group (2006). A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers. Am J Epidemiol, 164(2), 128135.Google Scholar
Garrison, S. R., Kolber, M. R., Allan, G. M., Bakal, J., Green, L., Singer, A., Trueman, D. R., McAlister, F. A., Padwal, R. S., Hill, M. D., Manns, B., McGrail, K., O’Neill, B., Greiver, M., Froentjes, L. S., Manca, D. P., Mangin, D., Wong, S. T., MacLean, C., … Korownyk, T. (2022). Bedtime versus morning use of antihypertensives for cardiovascular risk reduction (BedMed): Protocol for a prospective, randomised, open-label, blinded end-point pragmatic trial. BMJ Open, 12(2), e059711.CrossRefGoogle ScholarPubMed
Goldberg, R. J., Brady, P., Muller, J. E., Chen, Z. Y., de Groot, M., Zonneveld, P., & Dalen, J. E. (1990). Time of onset of symptoms of acute myocardial infarction. Am J Cardiol, 66(2), 140144.Google Scholar
Gotte, J., Zittermann, A., Deutsch, M. A., Schramm, R., Bleiziffer, S., Hata, M., & Gummert, J. F. (2020). Daytime variation in aortic valve surgery and clinical outcome: A propensity score-matched analysis. Ann Thorac Surg, 110(2), 558566.Google Scholar
Hermida, R. C., Ayala, D. E., Mojon, A., & Fernandez, J. R. (2010). Influence of circadian time of hypertension treatment on cardiovascular risk: Results of the MAPEC study. Chronobiol Int, 27(8), 16291651.Google Scholar
Hermida, R. C., Crespo, J. J., Dominguez-Sardina, M., Otero, A., Moya, A., Rios, M. T., Sineiro, E., Castineira, M. C., Callejas, P. A., Pousa, L., Salgado, J. L., Duran, C., Sanchez, J. J., Fernandez, J. R., Mojon, A., Ayala, D. E., & Hygia Project Investigators (2020). Bedtime hypertension treatment improves cardiovascular risk reduction: The Hygia Chronotherapy Trial. Eur Heart J, 41(48), 45654576.Google Scholar
Hill, R. J. W., Innominato, P. F., Levi, F., & Ballesta, A. (2020). Optimizing circadian drug infusion schedules towards personalized cancer chronotherapy. PLoS Comput Biol, 16(1), e1007218.Google Scholar
Hou, T., Su, W., Duncan, M. J., Olga, V. A., Guo, Z., & Gong, M. C. (2021). Time-restricted feeding protects the blood pressure circadian rhythm in diabetic mice. Proc Natl Acad Sci USA, 118(25), e2015873118.Google Scholar
Hu, K., Scheer, F. A., Laker, M., Smales, C., & Shea, S. A. (2011). Endogenous circadian rhythm in vasovagal response to head-up tilt. Circulation, 123(9), 961970.Google Scholar
Jabbur, M. L., & Johnson, C. H. (2021) Spectres of clock evolution: Past, present, and tet to come. Front Physiol, 12, 815847.Google Scholar
Johnson, D. A., Reid, M., Vu, T. T., Gallo, L. C., Daviglus, M. L., Isasi, C. R., Redline, S., & Carnethon, M. (2020). Associations of sleep duration and social jetlag with cardiometabolic risk factors in the study of Latino youth. Sleep Health, 6(5), 563569.Google Scholar
Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H., & McEwen, B. S. (2011). Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci USA, 108(4), 16571662.Google Scholar
Kawachi, I., Colditz, G. A., Stampfer, M. J., Willett, W. C., Manson, J. E., Speizer, F. E., & Hennekens, C.H. (1995). Prospective study of shift work and risk of coronary heart disease in women. Circulation, 92(11), 31783182.Google Scholar
Koenig, A. L., Shchukina, I., Amrute, J., Andhey, P. S., Zaitsev, K., Lai, L., Bajpai, G., Bredemeyer, A., Smith, G., Jones, C., Terrebonne, E., Rentschler, S. L., Artyomov, M. N., & Lavine, K. J. (2022). Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res, 1(3), 263280.CrossRefGoogle ScholarPubMed
Kwon, Y., Stafford, P. L., Lim, D. C., Park, S., Kim, S. H., Berry, R. B., & Calhoun, D. A. (2020). Blood pressure monitoring in sleep: Time to wake up. Blood Press Monit, 25(2), 6168.Google Scholar
Lahouaoui, H., Coutanson, C., Cooper, H. M., Bennis, M., & Dkhissi-Benyahya, O. (2014). Clock genes and behavioral responses to light are altered in a mouse model of diabetic retinopathy. PLoS One, 9(7), e101584.Google Scholar
Lal, H., Ahmad, F., Woodgett, J., & Force, T. (2015). The GSK-3 family as therapeutic target for myocardial diseases. Circ Res, 116(1), 138149.Google Scholar
Lefta, M., Campbell, K. S., Feng, H. Z., Jin, J. P., & Esser, K.A. 2012. Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol, 303(4), H475H485.Google Scholar
Leibetseder, V., Humpeler, S., Svoboda, M., Schmid, D., Thalhammer, T., Zuckermann, A., Marktl, W., & Ekmekcioglu, C. (2009). Clock genes display rhythmic expression in human hearts. Chronobiol Int, 26(4), 621636.Google Scholar
Luscher, T. F., Fox, K., Hamm, C., Carter, R. E., Taddei, S., Simoons, M., & Crea, F. (2020). Scientific integrity: What a journal can and cannot do. Eur Heart J, 41(48), 45524555.Google Scholar
Mackenzie, I. S., Rogers, A., Poulter, N. R., Williams, B., Brown, M. J., Webb, D. J., Ford, I., Rorie, D. A., Guthrie, G., Grieve, J. W. K., Pigazzani, F., Rothwell, P. M., Young, R., McConnachie, A., Struthers, A. D., Lang, C. C., MacDonald, T. M., & TIME Study Group (2022). Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): A prospective, randomised, open-label, blinded-endpoint clinical trial. Lancet, 400(10361), 14171425.CrossRefGoogle ScholarPubMed
Mahajan, A. M., Gandhi, H., Smilowitz, N. R., Roe, M. T., Hellkamp, A. S., Chiswell, K., Gulati, M., & Reynolds, H. R. (2019). Seasonal and circadian patterns of myocardial infarction by coronary artery disease status and sex in the ACTION Registry-GWTG. Int J Cardiol, 274, 1620.Google Scholar
Makarem, N., Paul, J., Giardina, E. V., Liao, M., & Aggarwal, B. (2020). Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol Int, 37(5), 673685.CrossRefGoogle Scholar
Martino, T., Arab, S., Straume, M., Belsham, D. D., Tata, N., Cai, F., Liu, P., Trivieri, M., Ralph, M., & Sole, M. J. (2004). Day/night rhythms in gene expression of the normal murine heart. J Mol Med (Berl), 82(4), 256264.CrossRefGoogle ScholarPubMed
Martino, T. A., Oudit, G. Y., Herzenberg, A. M., Tata, N., Koletar, M. M., Kabir, G. M., Belsham, D. D., Backx, P. H., Ralph, M. R., & Sole, M. J. (2008). Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol, 294(5), R1675R1683.Google Scholar
Martino, T. A., Tata, N., Belsham, D. D., Chalmers, J., Straume, M., Lee, P., Pribiag, H., Khaper, N., Liu, P. P., Dawood, F., Backx, P. H., Ralph, M. R., & Sole, M. J. (2007). Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension, 49(5), 11041113.Google Scholar
McNamara, P., Seo, S. B., Rudic, R. D., Sehgal, A., Chakravarti, D., & FitzGerald, G. A. (2001). Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: A humoral mechanism to reset a peripheral clock. Cell, 105(7), 877889.Google Scholar
Merikanto, I., Lahti, T., Puolijoki, H., Vanhala, M., Peltonen, M., Laatikainen, T., Vartiainen, E., Salomaa, V., Kronholm, E., & Partonen, T. (2013). Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int, 30(4), 470477.Google Scholar
Mills, J. N., Minors, D. S., & Waterhouse, J. M. (1978). Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. J Physiol, 285, 455470.Google Scholar
Mohawk, J. A., Green, C. B., & Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annu Rev Neurosci, 35, 445462.Google Scholar
Montaigne, D., Marechal, X., Modine, T., Coisne, A., Mouton, S., Fayad, G., Ninni, S., Klein, C., Ortmans, S., Seunes, C., Potelle, C., Berthier, A., Gheeraert, C., Piveteau, C., Deprez, R., Eeckhoute, J., Duez, H., Lacroix, D., Deprez, B., … Staels, B. (2018). Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: A single-centre propensity-matched cohort study and a randomised study. Lancet, 391(10115), 5969.Google Scholar
Morris, C. J., Purvis, T. E., Hu, K., Scheer, F. A. (2016). Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci USA, 113(10), E1402E1411.Google Scholar
Morris, C. J., Purvis, T. E., Mistretta, J., Hu, K., & Scheer, F. (2017). Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers. J Biol Rhythms, 32(2), 154164.Google Scholar
Morris, C. J., Yang, J. N., Garcia, J. I., Myers, S., Bozzi, I., Wang, W., Buxton, O. M., Shea, S. A., & Scheer, F. A. (2015). Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci USA, 112(17), E2225E2234.Google Scholar
Mukherji, A., Kobiita, A., & Chambon, P. (2015). Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci USA, 112(48), E6683E6690.CrossRefGoogle Scholar
Muller, J. E. (1999). Circadian variation in cardiovascular events. Am J Hypertens, 12(2 Pt 2), 35S42S.CrossRefGoogle ScholarPubMed
Muller, J. E., Stone, P. H., Turi, Z. G., Rutherford, J. D., Czeisler, C. A., Parker, C., Poole, W. K., Passamani, E., Roberts, R., Robertson, T., et al. (1985). Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med, 313(21), 13151322.Google Scholar
Mure, L. S., Le, H. D., Benegiamo, G., Chang, M. W., Rios, L., Jillani, N., Ngotho, M., Kariuki, T., Dkhissi-Benyahya, O., Cooper, H. M., & Panda, S. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 359(6381), eaao0318.CrossRefGoogle ScholarPubMed
Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., & Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb, 14(1), 133140.Google Scholar
Nemeth, S., Schnell, S., Argenziano, M., Ning, Y., & Kurlansky, P. (2021). Daytime variation does not impact outcome of cardiac surgery: Results from a diverse, multi-institutional cardiac surgery network. J Thorac Cardiovasc Surg, 162(1), 5667 e44.Google Scholar
Noll, N. A., Lal, H., & Merryman, W. D. (2020). Mouse models of heart failure with preserved or reduced ejection fraction. Am J Pathol, 190(8), 15961608.Google Scholar
Nordenskjold, A. M., Eggers, K. M., Jernberg, T., Mohammad, M. A., Erlinge, D., & Lindahl, B. (2019). Circadian onset and prognosis of myocardial infarction with non-obstructive coronary arteries (MINOCA). PLoS One, 14(4), e0216073.CrossRefGoogle ScholarPubMed
Parsons, M. J., Moffitt, T. E., Gregory, A. M., Goldman-Mellor, S., Nolan, P. M., Poulton, R., & Caspi, A. (2014). Social jetlag, obesity and metabolic disorder: Investigation in a cohort study. Int J Obes (Lond), 39(5), 842848.Google Scholar
Penev, P. D., Kolker, D. E., Zee, P. C., & Turek, F. W. (1998). Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol, 275(6 Pt 2), H2334H2337.Google ScholarPubMed
Podobed, P., Pyle, W. G., Ackloo, S., Alibhai, F. J., Tsimakouridze, E. V., Ratcliffe, W. F., Mackay, A., Simpson, J., Wright, D. C., Kirby, G. M., Young, M. E., & Martino, T. A. (2014). The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol, 307(2), R121R137.CrossRefGoogle ScholarPubMed
Rabinovich-Nikitin, I., & Kirshenbaum, L. A. (2022). Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med, S1050-1738(22)00120-7. Online ahead of print.Google Scholar
Rabinovich-Nikitin, I., Rasouli, M., Reitz, C. J., Posen, I., Margulets, V., Dhingra, R., Khatua, T. N., Thliveris, J. A., Martino, T. A., & Kirshenbaum, L. A. (2021). Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy, 17(11), 37943812.Google Scholar
Ramsey, A. M., Stowie, A., Castanon-Cervantes, O., & Davidson, A. J. (2020). Environmental circadian disruption increases stroke severity and dysregulates immune response. J Biol Rhythms, 35(4), 368376.Google Scholar
Reiter, R., Swingen, C., Moore, L., Henry, T. D., & Traverse, J. H. (2012). Circadian dependence of infarct size and left ventricular function after ST elevation myocardial infarction. Circ Res, 110(1), 105110.Google Scholar
Ruben, M. D., Wu, G., Smith, D. F., Schmidt, R. E., Francey, L. J., Lee, Y. Y., Anafi, R. C., & Hogenesch, J. B. (2018). A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med, 10(458), eaat8806.Google Scholar
Rudic, R. D., McNamara, P., Reilly, D., Grosser, T., Curtis, A. M., Price, T. S., Panda, S., Hogenesch, J. B., & FitzGerald, G. A. (2005). Bioinformatic analysis of circadian gene oscillation in mouse aorta. Circulation, 112(17), 2716-2724.Google Scholar
Sager, H. B., Husser, O., Steffens, S., Laugwitz, K. L., Schunkert, H., Kastrati, A., Ndrepepa, G., & Kessler, T. (2019). Time-of-day at symptom onset was not associated with infarct size and long-term prognosis in patients with ST-segment elevation myocardial infarction. J Transl Med, 17(1), 180.Google Scholar
Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., & Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One, 5(1), e8561.Google Scholar
Salazar, P., Konda, S., Sridhar, A., Arbieva, Z., Daviglus, M., Darbar, D., & Rehman, J. (2021). Common genetic variation in circadian clock genes are associated with cardiovascular risk factors in an African American and Hispanic/Latino cohort. Int J Cardiol Heart Vasc, 34, 100808.Google Scholar
Scheer, F. A., Hilton, M. F., Mantzoros, C. S., & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA, 106(11), 44534458.CrossRefGoogle ScholarPubMed
Scheer, F. A., Hu, K., Evoniuk, H., Kelly, E. E., Malhotra, A., Hilton, M. F., & Shea, S. A. (2010). Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA, 107(47), 2054120546.CrossRefGoogle ScholarPubMed
Scheer, F. A., Michelson, A. D., Frelinger, A. L., 3rd, Evoniuk, H., Kelly, E. E., McCarthy, M., Doamekpor, L. A., Barnard, M. R., & Shea, S. A. (2011). The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One, 6(9), e24549.Google Scholar
Scheer, F. A., & Shea, S. A. (2014). Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. Blood, 123(4), 590593.CrossRefGoogle ScholarPubMed
Scheer, F. A., Ter Horst, G. J., van Der Vliet, J., & Buijs, R. M. (2001). Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol Heart Circ Physiol, 280(3), H1391H1399.Google Scholar
von Scheidt, M., Zhao, Y., Kurt, Z., Pan, C., Zeng, L., Yang, X., Schunkert, H., & Lusis, A. J. (2017). Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab, 25(2), 248261.Google Scholar
Schibler, U., Gotic, I., Saini, C., Gos, P., Curie, T., Emmenegger, Y., Sinturel, F., Gosselin, P., Gerber, A., Fleury-Olela, F., Rando, G., Demarque, M., & Franken, P. (2015). Clock-talk: Interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol, 80, 223232.Google Scholar
Schroder, E. A., & Delisle, B. P. (2022). Time restricted feeding to the light cycle dissociates canonical circadian clocks and physiological rhythms in heart rate. Front Pharmacol, 13, 910195.Google Scholar
Schwartz, W. J., Reppert, S. M., Eagan, S. M., & Moore-Ede, M. C. (1983). In vivo metabolic activity of the suprachiasmatic nuclei: A comparative study. Brain Res, 274(1), 184187.Google Scholar
Scott, E. M., Carter, A. M., & Grant, P. J. (2008). Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond), 32(4), 658662.Google Scholar
Seneviratna, A., Lim, G. H., Devi, A., Carvalho, L. P., Chua, T., Koh, T. H., Tan, H. C., Foo, D., Tong, K. L., Ong, H. Y., Richards, A. M., Yew, C. K., & Chan, M. Y. (2015). Circadian dependence of infarct size and acute heart failure in ST elevation myocardial infarction. PLoS One, 10(6), e0128526.CrossRefGoogle ScholarPubMed
Shea, S. A., Hilton, M. F., Hu, K., & Scheer, F. A. (2011). Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res, 108(8), 980984.Google Scholar
Sisson, C., Bahiru, M. S. Manoogian, E. N. C., & Bittman, E. L. (2022). The duper mutation reveals previously unsuspected functions of Cryptochrome 1 in circadian entrainment and heart disease. Proc Natl Acad Sci USA, 119(32), e2121883119.CrossRefGoogle ScholarPubMed
Skrlec, I., Milic, J., & Steiner, R. (2020). The impact of the circadian genes CLOCK and ARNTL on myocardial infarction. J Clin Med, 9(2), 484.Google Scholar
Song, S., Tien, C. L., Cui, H., Basil, P., Zhu, N., Gong, Y., Li, W., Li, H., Fan, Q., Min Choi, J., Luo, W., Xue, Y., Cao, R., Zhou, W., Ortiz, A. R., Stork, B., Mundra, V., Putluri, N., York, B., … Sun, Z. (2022). Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox. Circulation, 145(6), 448464.Google Scholar
Storch, K. F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F. C., Wong, W. H., Weitz, C. J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature, 417(6884), 7883.Google Scholar
Suarez-Barrientos, A., Lopez-Romero, P., Vivas, D., Castro-Ferreira, F., Nunez-Gil, I., Franco, E., Ruiz-Mateos, B., Garcia-Rubira, J. C., Fernandez-Ortiz, A., Macaya, C., & Ibanez, B. (2011). Circadian variations of infarct size in acute myocardial infarction. Heart, 97(12), 970976.Google Scholar
Suwazono, Y., Sakata, K., Okubo, Y., Harada, H., Oishi, M., Kobayashi, E., Uetani, M., Kido, T., & Nogawa, K. (2006). Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. J Occup Environ Med, 48(5), 455461.Google Scholar
Tenkanen, L., Sjoblom, T., Kalimo, R., Alikoski, T., & Harma, M. (1997). Shift work, occupation and coronary heart disease over 6 years of follow-up in the Helsinki Heart Study. Scand J Work Environ Health, 23(4), 257265.Google Scholar
Tharp, G. D., & Folk, G. E Jr. (1965). Rhythmic changes in rate of the mammalian heart and heart cells during prolonged isolation. Comp Biochem Physiol, 14, 255273.CrossRefGoogle ScholarPubMed
Thosar, S. S., Butler, M. P., & Shea, S. A. (2018). Role of the circadian system in cardiovascular disease. J Clin Invest, 128(6), 21572167.Google Scholar
Torquati, L., Mielke, G. I., Brown, W. J., & Kolbe-Alexander, T. (2018). Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health, 44(3), 229238.Google Scholar
Tuchsen, F., Hannerz, H., & Burr, H. (2006). A 12 year prospective study of circulatory disease among Danish shift workers. Occup Environ Med, 63(7), 451455.Google Scholar
Ueyama, T., Krout, K. E., Nguyen, X. V., Karpitskiy, V., Kollert, A., Mettenleiter, T. C., & Loewy, A. D. (1999). Suprachiasmatic nucleus: a central autonomic clock. Nat Neurosci, 2(12), 10511053.Google Scholar
Vetter, C. (2020). Circadian disruption: What do we actually mean? Eur J Neurosci, 51(1), 531550.Google Scholar
Vetter, C., Devore, E. E., Wegrzyn, L. R., Massa, J., Speizer, F. E., Kawachi, I., Rosner, B., Stampfer, M. J., & Schernhammer, E. S. (2016). Association between rotating night shift work and risk of coronary heart disease among women. JAMA, 315(16), 17261734.Google Scholar
Vincent, F., Thourani, V. H., Ternacle, J., Redfors, B., Cohen, D. J., Hahn, R. T., Li, D., Crowley, A., Webb, J. G., Mack, M. J., Kapadia, S., Russo, M., Smith, C. R., Alu, M. C., Leon, M. B., & Pibarot, P. (2022). Time-of-day and clinical outcomes after surgical or transcatheter aortic valve replacement: Insights from the PARTNER trials. Circ Cardiovasc Qual Outcomes, 15(1), e007948.Google Scholar
Viola, A. U., Gabel, V., Chellappa, S. L., Schmidt, C., Hommes, V., Tobaldini, E., Montano, N., & Cajochen, C. (2015). Dawn simulation light: A potential cardiac events protector. Sleep Med, 16(4), 457461.Google Scholar
Vitaterna, M. H., King, D. P., Chang, A. M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., & Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 264(5159), 719725.Google Scholar
Vyas, M. V., Garg, A. X., Iansavichus, A. V., Costella, J., Donner, A., Laugsand, L. E., Janszky, I., Mrkobrada, M., Parraga, G., & Hackam, D. G. (2012). Shift work and vascular events: Systematic review and meta-analysis. BMJ, 345, e4800.Google Scholar
Wang, Y., Anderson, C., Dobrzynski, H., Hart, G., D’Souza, A., & Boyett, M.R. (2021). RNAseq shows an all-pervasive day-night rhythm in the transcriptome of the pacemaker of the heart. Sci Rep, 11(1), 3565.Google Scholar
West, A. C., Smith, L., Ray, D. W., Loudon, A. S. I., Brown, T. M., & Bechtold, D. A. (2017). Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun, 8(1), 417.Google Scholar
Wieringa, W. G., Lexis, C. P., Diercks, G. F., Lipsic, E., Tan, E. S., Schurer, R. A., van der Werf, H. W., van den Heuvel, A. F., Suurmeijer, A. J., Zijlstra, F., de Smet, B. J., & Pundziute, G. (2013). The feasibility of optical coherence tomography guided thrombus aspiration in patients with non-ST-elevation myocardial infarction after initial conservative therapy: A pilot study. Int J Cardiol, 168(5), 49814982.Google Scholar
Wintzinger, M., Panta, M., Miz, K., Prabakaran, A. D., Durumutla, H. B., Sargent, M., Peek, C. B., Bass, J., Molkentin, J. D., & Quattrocelli, M. (2022). Impact of circadian time of dosing on cardiomyocyte-autonomous effects of glucocorticoids. Mol Metab, 62, 101528.Google Scholar
Wittmann, M., Dinich, J., Merrow, M., & Roenneberg, T. (2006). Social jetlag: Misalignment of biological and social time. Chronobiol Int, 23(1–2): 497509.Google Scholar
Wong, P. M., Hasler, B. P., Kamarck, T. W., Muldoon, M. F., & Manuck, S. B. (2015). Social jetlag, chronotype, and cardiometabolic risk. J Clin Endocrinol Metab, 100(12), 46124620.Google Scholar
Wright, K. P. Jr., McHill, A. W., Birks, B. R., Griffin, B. R., Rusterholz, T., & Chinoy, E. D. (2013). Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol, 23(16), 15541558.Google Scholar
Wyatt, J. K., Ritz-De Cecco, A., Czeisler, C. A., & Dijk, D. J. (1999). Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol, 277(4 Pt 2), R1152R1163.Google Scholar
Xie, X., Kukino, A., Calcagno, H. E., Berman, A. M., Garner, J. P., & Butler, M. P. (2020). Natural food intake patterns have little synchronizing effect on peripheral circadian clocks. BMC Biol, 18(1), 160.Google Scholar
Xu, C., Weng, Z., Liang, J., Liu, Q., Zhang, X., Xu, J., Li, Q., Zhou, Y., & Gu, A. (2022). Shift work, genetic factors, and the risk of heart failure: A prospective study of the UK biobank. Mayo Clin Proc, 97(6), 11341144.Google Scholar
Yamamoto, T., Nakahata, Y., Tanaka, M., Yoshida, M., Soma, H., Shinohara, K., Yasuda, A., Mamine, T., & Takumi, T. (2005). Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem, 280(51), 4203642043.Google Scholar
Yong, Y. N., Henry, C. J., & Haldar, S. (2022). Is there a utility of chrono-specific diets in improving cardiometabolic health? Mol Nutr Food Res, 66(17), e2200043.Google Scholar
Young, M. E. (2016). Temporal partitioning of cardiac metabolism by the cardiomyocyte circadian clock. Exp Physiol, 101(8), 10351039.Google Scholar
Young, M. E., Brewer, R. A., Peliciari-Garcia, R. A., Collins, H. E., He, L., Birky, T. L., Peden, B. W., Thompson, E. G., Ammons, B. J., Bray, M. S., Chatham, J. C., Wende, A. R., Yang, Q., Chow, C. W., Martino, T. A., & Gamble, K. L. (2014). Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms, 29(4), 257276.Google Scholar
Young, M. E., Razeghi, P., & Taegtmeyer, H. (2001). Clock genes in the heart: Characterization and attenuation with hypertrophy. Circ Res, 88(11), 11421150.Google Scholar
Young, M. E., Wilson, C. R., Razeghi, P., Guthrie, P. H., & Taegtmeyer, H. (2002). Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol, 34(2), 223231.Google Scholar
Zhang, J., Chatham, J. C., & Young, M. E. (2020). Circadian regulation of cardiac physiology: Rhythms that keep the heart beating. Annu Rev Physiol, 82, 79101.Google Scholar
Zhang, L., Prosdocimo, D. A., Bai, X., Fu, C., Zhang, R., Campbell, F., Liao, X., Coller, J., & Jain, M. K. (2015). KLF15 establishes the landscape of diurnal expression in the heart. Cell Rep, 13(11), 23682375.Google Scholar
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., & Hogenesch, J. B. (2014). A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA, 111(45), 1621916224.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×