Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T20:48:01.359Z Has data issue: false hasContentIssue false

14 - Plant–soil feedback and soil biodiversity affect the composition of plant communities

Published online by Cambridge University Press:  17 September 2009

Wim H. van der Putten
Affiliation:
Netherlands Institute of Ecology
Richard Bardgett
Affiliation:
Lancaster University
Michael Usher
Affiliation:
University of Stirling
David Hopkins
Affiliation:
University of Stirling
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P. & Band, S. R. (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65, 759–791CrossRefGoogle Scholar
Alphei, J., Bonkowski, M. & Scheu, S. (1996). Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia, 106, 111–126CrossRefGoogle ScholarPubMed
Anderson, J. M. (2000). Food web functioning and ecosystem processes: problems and perceptions of scaling. Invertebrates as Webmasters in Ecosystems (Ed. by , D. C. Coleman & , P. F. Hendricks), pp. 3–24. Wallingford: CAB InternationalGoogle Scholar
Augspurger, C. K. & Kelly, C. K. (1984). Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61, 211–217CrossRefGoogle ScholarPubMed
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M. & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 1377–1380CrossRefGoogle ScholarPubMed
Bakker, E. S. & Olff, H. (2003). The impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. Journal of Vegetation Science, 14, 465–474CrossRefGoogle Scholar
Bardgett, R. D. (2002). Causes and consequences of biological diversity in soil. Zoology, 105, 367–374CrossRefGoogle ScholarPubMed
Bardgett, R. D. & Chan, K. F. (1999). Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology and Biochemistry, 31, 1007–1014CrossRefGoogle Scholar
Bardgett, R. D., Denton, C. S. & Cook, R. (1999a). Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecology Letters, 2, 357–360CrossRefGoogle Scholar
Bardgett, R. D., Leemans, D. K., Cook, R. & Hobbs, P. J. (1997). Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biology and Biochemistry, 29, 1285–1294CrossRefGoogle Scholar
Bardgett, R. D., Mawdsley, J. L., Edwards, S., et al. (1999b). Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Functional Ecology, 13, 650–660CrossRefGoogle Scholar
Bardgett, R. D. & Wardle, D. A. (2003). Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258–2268CrossRefGoogle Scholar
Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. Journal of Ecology, 78, 413–427CrossRefGoogle Scholar
Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry, 42, 73–88CrossRefGoogle Scholar
Bever, J. D. (1994). Feedback between plants and their soil communities in an old field community. Ecology, 75, 1965–1977CrossRefGoogle Scholar
Bever, J. D. (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465–473CrossRefGoogle Scholar
Bever, J. D., Morton, J. B., Antonovics, J. & Schulz, P. A. (1996). Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in mown grassland. Journal of Ecology, 84, 71–82CrossRefGoogle Scholar
Bever, J. D., Westover, K. M. & Antonovics, J. (1997). Incorporation of the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561–573CrossRefGoogle Scholar
Bezemer, T. M., Wagenaar, R., Dam, N. M. & Wäckers, F. L. (2003). Interactions between above- and belowground insect herbivores as mediated by the plant defence system. Oikos, 101, 555–562CrossRefGoogle Scholar
Binkley, D. & Giardina, C. (1998). Why do tree species affect soils? The warp and woof of tree–soil interactions. Biogeochemistry, 42, 89–106CrossRefGoogle Scholar
Blomqvist, M. M., Olff, H., Blaauw, M. B., Bongers, T. & Putten, W. H. (2000). Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos, 90, 582–598CrossRefGoogle Scholar
Bongers, T. & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10, 239–251CrossRefGoogle Scholar
Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J. & Scheu, S. (2000). Microbial–faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology, 36, 135–147CrossRefGoogle Scholar
Bonkowski, M., Geoghegan, I. E., Birch, A. N. E. & Griffiths, B. S. (2001). Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos, 101, 441–450CrossRefGoogle Scholar
Bradford, M. A., Jones, T. H., Bardgett, R. D., et al. (2002). Impacts of soil faunal community composition on model grassland ecosystems. Science, 298, 615–618CrossRefGoogle ScholarPubMed
Brinkman, E. P., Duyts, H. & Putten, W. H. (2005). Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos, 110, 417–427CrossRefGoogle Scholar
Broughton, L. C. & Gross, K. L. (2000). Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia, 125, 420–427CrossRefGoogle Scholar
Brown, V. K. & Gange, A. C. (1990). Insect herbivory below-ground. Advances in Ecological Research, 20, 1–58CrossRefGoogle Scholar
Brussaard, L., BehanPelletier, V. M., Bignell, D. E., et al. (1997). Biodiversity and ecosystem functioning in soil. Ambio, 26, 563–570Google Scholar
Burdon, J. J. (1987). Diseases and Plant Population Biology. Cambridge: Cambridge University Press
Callaway, R. M., Mahall, B. E., Wicks, C., Pankey, J. & Zabinski, C. (2003). Soil fungi and the effects of an invasive forb on grasses: neighbor identity matters. Ecology, 84, 129–135CrossRefGoogle Scholar
Chen, J. D., Bird, G. W. & Renner, K. A. (1995). Influence of Heterodera glycines on interspecific competition associated with Glycine max and Chenopodium album. Journal of Nematology, 27, 63–69Google ScholarPubMed
Crawley, M. J. (1997). Plant–herbivore dynamics. Plant Ecology (Ed. by , M. J. Crawley), pp. 401–474. Oxford: Blackwell ScienceGoogle Scholar
D'Hertefeldt, T. & Putten, W. H. (1998). Physiological integration of the clonal plant Carex arenaria and its response to soil-borne pathogens. Oikos, 81, 229–237CrossRefGoogle Scholar
Deyn, G. B., Raaijmakers, C. E., Ruijven, J., Berendse, F. & Putten, W. H. (2004). Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 106, 576–586CrossRefGoogle Scholar
Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., et al. (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422, 711–713CrossRefGoogle ScholarPubMed
Rooij-van der Goes, P. C. E. M. (1995). The role of plant-parasitic nematodes and soil-borne fungi in the decline of Ammophila arenaria (L.) Link. New Phytologist, 129, 661–669CrossRefGoogle Scholar
Rooij-van der Goes, P. C. E. M., Putten, W. H. & Dijk, C. (1995). Analysis of nematodes and soil-borne fungi from Ammophila arenaria (marram grass) in Dutch coastal foredunes by multivariate techniques. European Journal of Plant Pathology, 101, 149–162CrossRefGoogle Scholar
Ruiter, P. C., Neutel, A. M. & Moore, J. C. (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269, 1257–1260CrossRefGoogle ScholarPubMed
Diaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. (2003). Functional diversity revealed by removal experiments. Trends in Ecology and Evolution. 18, 140–146CrossRefGoogle Scholar
Duffy, J. E. (2003). Biodiversity loss, trophic skew and ecosystem functioning. Ecology Letters, 6, 680–687CrossRefGoogle Scholar
Duineveld, B. M. & Veen, J. A. (1999). The number of bacteria in the rhizosphere during plant development: relating colony-forming units to different reference units. Biology and Fertility of Soils, 28, 285–291CrossRefGoogle Scholar
Eisenback, J. D. (1993). Interactions between nematodes with root-rot fungi. Nematode Interactions (Ed. by , M. W. Khan), pp. 134–174. London: Chapman and HallGoogle Scholar
Eom, A. H., Hartnett, D. C. & Wilson, G. W. T. (2000). Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435–444CrossRefGoogle ScholarPubMed
Ettema, C. H. & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution, 17, 177–183CrossRefGoogle Scholar
Fitter, A. H., Hodge, A., Daniell, T. J. & Robinson, D. (1999). Resource sharing in plant–fungus communities: did the carbon move for you?Trends in Ecology and Evolution, 14, 70CrossRefGoogle ScholarPubMed
Gange, A. C. & West, H. M. (1994). Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist, 128, 79–87CrossRefGoogle Scholar
Grayston, S. J., Dawson, L. A., Treonis, A. M., et al. (2001). Impact of root herbivory by insect larvae on soil microbial communities. European Journal of Soil Zoology, 37, 277–280CrossRefGoogle Scholar
Griffiths, B. S., Ritz, K., Bardgett, R. D., et al. (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos, 90, 279–294CrossRefGoogle Scholar
Grime, J. P. (1998). Benefits of plant diversity: immediate, filter and founder effects. Journal of Ecology, 86, 902–910CrossRefGoogle Scholar
Grime, J. P., Mackey, J. M., Hillier, S. H. & Read, D. J. (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328, 420–422CrossRefGoogle Scholar
Hart, M. M., Reader, R. J. & Klironomos, J. N. (2001). Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia, 93, 1186–1194CrossRefGoogle Scholar
Hartnett, D. C. & Wilson, G. W. T. (1999). Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80, 1187–1195CrossRefGoogle Scholar
Hedlund, K. & Gormsen, D. (2002). Ectomycorrhizal colonization of Norway spruce (Picea abies) and beech (Fagus sylvatica) seedlings in a set aside agricultural soil. Applied Soil Ecology, 19, 71–78CrossRefGoogle Scholar
Hedlund, K., Griffiths, B., Christensen, S., et al. (2003). Trophic interactions in a changing world: responses of soil food webs. Oikos, 103, 45–58CrossRefGoogle Scholar
Hedlund, K., Santa Regina, I., Putten, W. H., et al. (2003). Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos, 103, 45–58CrossRefGoogle Scholar
Heemsbergen, D. A., Berg, M. P., Loreau, M., et al. (2004). Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019–1020CrossRefGoogle ScholarPubMed
Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. Y. (1998). Ploughing up the wood wide web?Nature, 394, 431CrossRefGoogle ScholarPubMed
Herben, T., Krahulec, F., Hadincova, V., Pechackova, S. & Kovarova, M. (1997). Fine-scale spatio-temporal patterns in a mountain grassland: do species replace each other in a regular fashion?Journal of Vegetation Science, 8, 217–224CrossRefGoogle Scholar
Holah, J. C., Wilson, M. V. & Hansen, E. M. (1997). Impacts of a native root-rotting pathogen on successional development of old-growth Douglas fir forests. Oecologia, 111, 429–433CrossRefGoogle ScholarPubMed
Hooper, D. U., Bignell, D. E., Brown, V. K., et al. (2000). Interactions between above- and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms and feedbacks. BioScience, 50, 1049–1061CrossRefGoogle Scholar
Huston, M. A. (1997). Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460CrossRefGoogle ScholarPubMed
Huston, M. A., Aarssen, L., Austin, M. P., et al. (2000). No consistent effect of plant diversity on productivity. Science, 289, 1255aCrossRefGoogle ScholarPubMed
Jonsson, L., Nilsson, M.-C., Wardle, D. A. & Zackrisson, O. (2001). Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos, 93, 353–364CrossRefGoogle Scholar
Kaczmarek, M. A., Kajak, A. & Wasilewska, L. (1995). Interactions between diversity of grassland vegetation, soil fauna and decomposition process. Acta Zoologica Fennica, 196, 236–238Google Scholar
Kaye, J. P. & Hart, S. C. (1997). Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution, 12, 139–143CrossRefGoogle ScholarPubMed
Klironomos, J. N. (2002). Feedback to the soil community contributes to plant rarity and invasiveness in communities. Nature, 417, 67–70CrossRefGoogle ScholarPubMed
Koide, R., Li, M., Lewis, J. & Irby, C. (1988). Role of mycorrhizal infection in the growth and reproduction of wild vs cultivated plants: 1. Wild vs. cultivated oates. Oecologia, 77, 537–543CrossRefGoogle Scholar
Korthals, G. W., Smilauer, P., Dijk, C. & Putten, W. H. (2001). Linking above- and belowground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land. Functional Ecology, 15, 506–514CrossRefGoogle Scholar
Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. (2002). Exotic plant species alter microbial community structure and function in the soil. Ecology, 83, 3152–3166CrossRefGoogle Scholar
Kowalchuk, G. A., Buma, D. S., Boer, W., Klinkhamer, P. G. L. & , Veen J. A. (2002). Effects of aboveground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81, 509–520CrossRefGoogle Scholar
Laakso, J. & Setälä, H. (1999a). Population- and ecosystem-level effects of predation on microbial-feeding nematodes. Oecologia, 120, 279–286CrossRefGoogle Scholar
Laakso, J. & Setälä, H. (1999b). Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos, 87, 57–64CrossRefGoogle Scholar
Laakso, J., Setälä, H. & Palojarvi, A. (2000). Influence of decomposer food web structure and nitrogen availability on plant growth. Plant and Soil, 225, 153–165CrossRefGoogle Scholar
Liiri, M., Setälä, H., Haimi, J., Pennanen, T. & Fritze, H. (2002). Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos, 96, 137–149CrossRefGoogle Scholar
Little, L. R. & Maun, M. A. (1996). The ‘Ammophila problem’ revisited: a role for mycorrhizal fungi. Journal of Ecology, 84, 1–7CrossRefGoogle Scholar
Loreau, M., Naeem, S. & Inchausti, P. (2002). Biodiversity and Ecosystem Functioning. Oxford: Oxford University Press
Loreau, M., Naeem, S., Inchausti, P., et al. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804–808CrossRefGoogle ScholarPubMed
Malý, S., Korthals, G. W., Dijk, C., Putten, W. H. & Boer, W. (2000). Effect of vegetation manipulation of abandoned land on soil microbial properties. Biology and Fertility of Soils, 31, 121–127CrossRefGoogle Scholar
Marrs, R. H. (1993). Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Advances in Ecological Research, 24, 241–300CrossRefGoogle Scholar
Masters, G. J. & Brown, V. K. (1992). Plant-mediated interactions between two spatially separated insects. Functional Ecology, 6, 175–179CrossRefGoogle Scholar
Masters, G. J., Jones, T. H. & Rogers, M. (2001). Host-plant mediated effects of root herbivory on insect predators and their parasitoids. Oecologia, 127, 246–250CrossRefGoogle ScholarPubMed
McNaughton, S. J., Ruess, R. W. & Seagle, S. W. (1988). Large mammals and process dynamics in African ecosystems. BioScience, 38, 794–800CrossRefGoogle Scholar
Mikola, J., Bardgett, R. D. & Hedlund, K. (2002). Biodiversity, ecosystem functioning and soil decomposer food webs. Biodiversity and Ecosystem Functioning (Ed. by , M. Loreau, , S. Naeem & , P. Inchausti), pp. 169–180. Oxford: Oxford University PressGoogle Scholar
Mills, K. E. & Bever, J. D. (1998). Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology, 79, 1595–1601CrossRefGoogle Scholar
Moora, M. & Zobel, M. (1996). Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 108, 79–84CrossRefGoogle ScholarPubMed
Moore, J., Hunt, H. W. & Elliott, E. T. (1991). Ecosystem perspectives, soil organisms and herbivores. Microbial Mediation of Plant–Herbivore Interaction (Ed. by , P. Barbosa, , V. A. Krischik & , C. G. Jones), pp. 105–140. New York: WileyGoogle Scholar
Mortimer, S. R., van der Putten, W. H. & Brown, V. K. (1999). Insect and nematode herbivory below-ground: interactions and role in vegetation development. Herbivores: Between Plants and Predators (Ed. by , H. Olff, , V. K. Brown & , R. H. Drent), pp. 205–238. Oxford: Blackwell ScienceGoogle Scholar
Newsham, K. K., Fitter, A. H. & Watkinson, A. R. (1994). Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. Journal of Ecology, 82, 805–814CrossRefGoogle Scholar
Newsham, K. K., Fitter, A. H. & Watkinson, A. R. (1995). Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 10, 407–411CrossRefGoogle ScholarPubMed
Northup, R. R., Yu, Z. S., Dahlgren, R. A. & Vogt, K. A. (1995). Polyphenol control of nitrogen release from pine litter. Nature, 377, 227–229CrossRefGoogle Scholar
O'Connor, P. J., Smith, S. E. & Smith, E. A. (2002). Arbuscular mycorrhizas influence plant species diversity and community structure in a semiarid herbland. New Phytologist, 154, 209–218CrossRefGoogle Scholar
Olff, H., Hoorens, B., Goede, R. G. M., Putten, W. H. & Gleichman, J. M. (2000). Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia, 125, 45–54CrossRefGoogle ScholarPubMed
Oremus, P. A. I. & Otten, H. (1981). Factors affecting growth and nodulation of Hippophaë rhamnoides L. spp. rhamnoides in soils from two successional stages of dune formation. Plant and Soil, 63, 317–331CrossRefGoogle Scholar
Packer, A. & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278–281CrossRefGoogle Scholar
Packer, A. & Clay, K. (2003). Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology, 84, 108–119CrossRefGoogle Scholar
Porazinska, D. L., Bardgett, R. D., Blaauw, M. B., et al. (2003). Relationships at the aboveground–belowground interface: plants, soil microflora and microfauna, and soil processes. Ecological Monographs, 73, 377–395CrossRefGoogle Scholar
Rafaelli, D., van der Putten, W. H., Persson, L., et al. (2002). Multi-trophic dynamics and ecosystem processes. Biodiversity and Ecosystem Functioning (Ed. by , M. Loreau, , S. Naeem & , P. Inchausti), pp. 147–154. Oxford: Oxford University PressGoogle Scholar
Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. (2003). Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology, 84, 2281–2291CrossRefGoogle Scholar
Robertson, G. P. & Freckman, D. W. (1995). The spatial distribution of nematode trophic groups across a cultivated ecosystem. Ecology, 76, 1425–1433CrossRefGoogle Scholar
Scheu, S. & Schulz, E. (1996). Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity and Conservation, 5, 235–250CrossRefGoogle Scholar
Scheu, S., Theenhaus, A. & Jones, T. H. (1999). Links between the detritivore and herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia, 119, 541–551CrossRefGoogle ScholarPubMed
Setälä, H. & Huhta, V. (1991). Soil fauna increases Betula pendula growth: laboratory experiments with coniferous forest floor. Ecology, 72, 665–671CrossRefGoogle Scholar
Sikora, R. W. & Carter, W. W. (1987). Nematode interactions with fungal and bacterial plant pathogens: fact or fantasy. Vistas on Nematology (Ed. by , J. A. Veech & , P. W. Dickson), pp. 307–312. Hyattsville, MD: Society of NematologistsGoogle Scholar
Smith, M. D., Hartnett, D. C. & Wilson, G. W. T. (1999). Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia, 121, 574–582CrossRefGoogle ScholarPubMed
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. London: Academic Press
Stanton, N. L. (1988). The underground in grasslands. Annual Review of Ecology and Systematics, 19, 573–589CrossRefGoogle Scholar
Streitwolf-Engel, R., Boller, T., Wiemken, A. & Sanders, I. R. (1997). Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. Journal of Ecology, 85, 181–191CrossRefGoogle Scholar
Strong, D. R. (1999). Predator control in terrestrial ecosystems: the underground food chain of bush lupins. Herbivores: Between Plants and Predators (Ed. by , H. Olff, , V. K. Brown & , R. H. Drent), pp. 577–602. Oxford: Blackwell ScienceGoogle Scholar
Stuefer, J. F., Kroon, H. & During, H. J. (1996). Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Functional Ecology, 10, 328–334CrossRefGoogle Scholar
Tilman, D. (1982). Resource Competition and Community Structure. Princeton, NJ: Princeton University Press
Torsvik, V., Salte, K., Sorheim, R. & Goksoyr, J. (1990). Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Applied and Environmental Microbiology, 56, 776–781Google Scholar
Troelstra, S. R., Wagenaar, R., Smant, W. & Peters, B. A. M. (2001). Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors. New Phytologist 150, 697–706CrossRefGoogle Scholar
Turkington, R. & Klein, E. (1991). Competitive outcome among four pasture species in sterilized and unsterilized soils. Soil Biology and Biochemistry, 23, 837–843CrossRefGoogle Scholar
Andel, J., Bakker, J. P. & Grootjans, A. P. (1993). Mechanisms of vegetation succession: a review of concepts and perspectives. Acta Botanica Neerlandica, 42, 413–433CrossRefGoogle Scholar
Breemen, N. (1998). Plant-induced soil changes: processes and feedbacks. Preface. Biogeochemistry, 42, 1–2CrossRefGoogle Scholar
Heijden, M. G. A., Boller, T., Wiemken, A. & Sanders, I. R. (1998a). Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082–2091CrossRefGoogle Scholar
Heijden, M. G. A., Klironomos, J. N., Ursic, M., et al. (1998b). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72CrossRefGoogle Scholar
Putten, W. H. (2003). Plant defense below ground and spatio-temporal processes in natural vegetation. Ecology, 84, 2269–2280CrossRefGoogle Scholar
Putten, W. H., Maas, P. W. Th., Gulik, W. J. M. & Brinkman, H. (1990). Characterisation of soil organisms involved in the degeneration of Ammophila arenaria. Soil Biology and Biochemistry, 22, 845–852CrossRefGoogle Scholar
Putten, W. H. & Peters, B. A. M. (1997). How soil-borne pathogens may affect plant competition. Ecology, 78, 1785–1795CrossRefGoogle Scholar
Putten, W. H., Dijk, C. & Peters, B. A. M. (1993). Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53–56CrossRefGoogle Scholar
Putten, W. H., Dijk, C. & Troelstra, S. R. (1988). Biotic soil factors affecting the growth and development of Ammophila aenaria. Oecologia, 76, 313–320CrossRefGoogle Scholar
Putten, W. H., Vet, L. E. M., Harvey, J. A. & Wäckers, F. L. (2001). Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens and their antagonists. Trends in Ecology and Evolution, 16, 547–554CrossRefGoogle Scholar
Putten, W. H. & Stoel, C. D. (1998). Plant-parasitic nematodes and spatio-temporal variation in natural vegetation. Applied Soil Ecology, 10, 253–262CrossRefGoogle Scholar
Stoel, C. D., Putten, W. H. & Duyts, H. (2002). Development of a negative plant–soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonisation. Journal of Ecology, 90, 978–988CrossRefGoogle Scholar
Verschoor, B. C. (2002). Carbon and nitrogen budgets of plant-feeding nematodes in grasslands of different productivity. Applied Soil Ecology, 20, 15–25CrossRefGoogle Scholar
Verschoor, B. C., Goede, R. G. M., Vries, F. W. & Brussaard, L. (2001). Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertiliser application. Applied Soil Ecology, 17, 1–17CrossRefGoogle Scholar
Wardle, D. A. (1999). Is “sampling effect” a problem for experiments investigating biodiversity–ecosystem function relationships?Oikos, 87, 403–407CrossRefGoogle Scholar
Wardle, D. A. (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton, NJ: Princeton University Press
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., et al. (2004). Linkages between above-ground and below-ground biota. Science, 304, 1629–1633CrossRefGoogle Scholar
Wardle, D. A., Bonner, K. I., Barker, G. M., et al. (1999a). Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity and ecosystem properties. Ecological Monographs, 69, 535–568CrossRefGoogle Scholar
Wardle, D. A., Nicholson, K. S., Bonner, K. I. & Yeates, G. W. (1999b). Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biology and Biochemistry, 31, 1691–1706CrossRefGoogle Scholar
Wardle, D. A. & van der Putten, W. H. (2002). Biodiversity, ecosystem functioning and above-ground–below-ground linkages. Biodiversity and Ecosystem Functioning (Ed. by , M. Loreau, , S. Naeem & , P. Inchausti), pp. 155–168. Oxford: Oxford University PressGoogle Scholar
Wardle, D. A., Yeates, G. W., Williamson, W. & Bonner, K. I. (2003). The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos, 102, 45–56CrossRefGoogle Scholar
Welling, C. H., Pederson, R. L. & Valk, A. G. (1988). Recruitment from the seed bank and the development of zonation of emergent vegetation during a drawdown in a prairie wetland. Journal of Ecology, 76, 483–496CrossRefGoogle Scholar
Westover, K. M. & Bever, J. D. (2001). Mechanisms of plant species coexistence: roles of rhizosphere bacteria and root fungal pathogens. Ecology, 82, 3285–3294CrossRefGoogle Scholar
Yeates, G. W., Bongers, T., Goede, R. G. M., Freckman, D. W. & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera: an outline for soil ecologists. Journal of Nematology, 25, 315–331Google ScholarPubMed
Yeates, G. W., Watson, R. N. & Steele, K. W. (1985). Complementary distribution of Meloidogyne, Heterodera, and Pratylenchus (Nematoda: Tylenchida) in roots of white clover. Proceedings of the fourth Australian Conference on Grassland Invertebrate Ecology (Ed. by , R. B. Chapman), pp. 71–79. Christchurch: Caxton PressGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×