Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T15:56:21.068Z Has data issue: false hasContentIssue false

10 - Aquatic Animals Operating at High Reynolds Numbers

Biomimetic Opportunities for AUV Applications*

from Part III - Natural Phenomena

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

Size does matter. Whether small or large in body size, all organisms obey the laws of physics and thus are subjected to forces imposed by the physical environment. These forces place constraints on the level of performance in regard to physiology (e.g., metabolic rate, heat transfer), morphological design (e.g., skeletal framework, muscle mechanics), and behavior (e.g., predator–prey interactions, flight, locomotor speed). The structural and functional consequences of a change in size are referred to as scaling [1].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schmidt-Nielsen, K. (1977). Problems of scaling: Locomotion and physiological correlates. In Pedley, T. J. (Ed.), Scale effects in animal locomotion. London: Academic Press; p. 545.Google Scholar
Newell, N. D. (1949). Phyletic size increase – An important trend illustrated by fossil invertebrates. Evolution, 3, 103124.Google Scholar
Pianka, E. R. (1970). On r-and K-selection. American Naturalist, 104(940), 592597.Google Scholar
Hildebrand, M. (1975). Analysis of vertebrate structure. New York: Wiley; p. 657.Google Scholar
Bonner, J. T. (2006). Why size matters. Princeton, NJ: Princeton University Press; p. 161.Google Scholar
Kardong, K. V. (2012). Vertebrates: Comparative anatomy, function, evolution. New York: McGraw-Hill; p. 794.Google Scholar
Milne, L. J., & Milne, M. (1978). Insects of the water surface. Scientific American, 238, 134142.CrossRefGoogle Scholar
Bush, J. W. M., & Hu, D. L. (2006). Walking on water: Biolocomotion at the interface. Annual Review of Fluid Mechanics, 38, 339369.CrossRefGoogle Scholar
Johnson, D. L. (1980). Problems in the land vertebrate zoogeography of certain islands and the swimming powers of elephants. Journal of Biogeography, 7, 383398.Google Scholar
Wes, J. B. (2002). Why doesn’t the elephant have a pleural space? News in Physiological Sciences, 17, 4750.Google Scholar
Fish, F. E., & Kocak, D. M. (2011). Biomimetics and marine technology: An introduction. Marine Technology Society Journal, 45, 813.Google Scholar
Scaradozzi, D., Palmieri, G., Costa, D., & Pinelli, A. (2017). BCF swimming locomotion for autonomous underwater robots: A review and novel solution to improve control and efficiency. Ocean Engineering, 130, 437453.Google Scholar
Webb, B., & Consi, T. R. (2001). Biorobotics: Methods and applications. Menlo Park, CA: American Association for Artificial Intelligence; p. 208.Google Scholar
Triantafyllou, G. S., & Triantafyllou, M. S. (1995). An efficient swimming machine. Scientific American, 272, 6470.Google Scholar
Bushnell, D. M. (1998). Drag reduction “designer fluid mechanics” – Aeronautical status and associated hydrodynamic possibilities (an “embarrassment of technical riches”). In Meng, J. C. S. (Ed.), Proceedings of the International Symposium on Seawater Drag Reduction. Newport, RI: Naval Undersea Warfare Center.Google Scholar
Fish, F. E., & Rohr, J. (1999). Review of dolphin hydrodynamics and swimming performance. SPAWARS Technical Report 1801. San Diego, CA: SPAWARS.Google Scholar
Bandyopadhyay, P. R. (2005). Trends in biorobotic autonomous undersea vehicles. Journal of Oceanic Engineering, 30, 109139.CrossRefGoogle Scholar
Fish, F. E. (2013). Advantages of natural propulsive systems. Marine Technology Society Journal, 47, 3744.CrossRefGoogle Scholar
Shaw, W. C. (1959). Sea animals and torpedoes. In U. S. Naval Ordinance Test Station. NOTS TP 2299, NAVORD Report 6573. China Lake, CA: Naval Ordinance Test Station.Google Scholar
McKenna, T. M. (2011). Developing bioinspired autonomous systems. Marine Technology Society Journal, 45, 1923.CrossRefGoogle Scholar
Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 311.CrossRefGoogle Scholar
Webb, P. W. (1975). Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Board of Canada, 190, 1159.Google Scholar
Vogel, S. (1994). Life in moving fluids. Princeton, NJ: Princeton University Press; p. 467.Google Scholar
Webb, P. W. (1988). Simple physical principles and vertebrate aquatic locomotion. American Zoologist, 28, 709725.Google Scholar
Lighthill, J. (1975). Mathematical biofluid dynamics. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Fish, F. E. (1996). Transitions from drag-based to lift-based propulsion in mammalian swimming. American Zoologist, 36, 628641.Google Scholar
Wu, T. Y. (1977). Introduction to the scaling of aquatic animal locomotion. In Pedley, T. J. (Ed.), Scale effects in animal locomotion. London: Academic Press; p. 545.Google Scholar
Potter, M. C., & Foss, J. F. (1975). Fluid mechanics. New York: Ronald Press; p. 588.Google Scholar
Jordan, C. E. (1992). A model of rapid-start swimming at intermediate Reynolds number: Undulatory locomotion in the chaetognath Sagitta elegans. Journal of Experimental Biology, 163, 119137.Google Scholar
Yen, J. (2000). Life in transition: Balancing inertial and viscous forces by planktonic copepods. Biological Bulletin, 198, 213224.Google Scholar
McHenry, M. J., Azizi, E., & Strother, J. A. (2003). The hydrodynamics of locomotion in intermediate Reynolds numbers: Undulatory swimming in ascidian larvae (Botrylloides sp.). Journal of Experimental Biology, 206, 327343.CrossRefGoogle ScholarPubMed
Fish, F. E. (1993). Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics. Australian Journal of Zoology, 42, 79101.Google Scholar
Vogel, S. (2008). Modes and scaling in aquatic locomotion. Integrative and Comparative Biology, 48, 702712.CrossRefGoogle ScholarPubMed
Fox, R. W., Pritchard, P. J., & McDonald, A. T. (2009). Introduction to fluid mechanics. Hoboken, NJ: Wiley; p. 752.Google Scholar
Blake, R. W. (1983). Fish locomotion. Cambridge: Cambridge University Press; p. 208.Google Scholar
Tomilin, A. G. (1957). Mammals of the U.S.S.R. and adjacent countries (Vol. IX, Cetacea). Moskva: Izdatel'stvo Akademi Nauk SSSR; p. 717 (translated from Russian).Google Scholar
Hutchinson, R. (2001). Submarines: War beneath the waves from 1776 to the present day. New York: HarperCollins; p. 223.Google Scholar
Aleyev, Yu. G. (1977). Nekton. The Hague: Junk; p. 433.CrossRefGoogle Scholar
Kooyman, G. L. (1989). Diverse divers. Berlin: Springer-Verlag; p. 200.CrossRefGoogle Scholar
Videler, J. J. (1993). Fish swimming. London: Chapman & Hall; p. 260.Google Scholar
Gafurov, S. A., & Klochkov, E. V. (2015). Autonomous unmanned underwater vehicles development tendencies. Procedia Engineering, 106, 141148.CrossRefGoogle Scholar
Hoerner, S. F. (1965). Fluid-dynamic drag. Brick Town, NJ: Author.Google Scholar
Fish, F. E., & Hui, C. A. (1991). Dolphin swimming: A review. Mammal Review, 21, 181196.Google Scholar
Fish, F. E. (2006). The myth and reality of Gray’s paradox: Implication of dolphin drag reduction for technology. Bioinspiration and Biomimetics, 1, R17R25.CrossRefGoogle ScholarPubMed
Gray, J. (1936). Studies in animal locomotion VI. The propulsive powers of the dolphin. Journal of Experimental Biology, 13, 192199.CrossRefGoogle Scholar
Kramer, M. O. (1960). Boundary layer stabilization by distributed damping. Journal of the American Society for Naval Engineering, 72, 2533.Google Scholar
Kramer, M. O. (1960). The dolphins’ secret. New Scientist, 7, 11181120.Google Scholar
Bechert, D. W., Bruse, M., & Hage, W. (2000). Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 28, 403412.Google Scholar
Bechert, D. W., Bruse, M., Hage, W., & Meyer, R. (2000). Fluid mechanics of biological surfaces and their technological application. Naturwissenschaffen, 87, 157171.Google Scholar
Carpenter, P. W., Davies, C., & Lucey, A. D. (2000). Hydrodynamics and compliant walls: Does the dolphin have a secret? Current Science, 79, 758765.Google Scholar
Romanenko, E. V. (2002). Fish and dolphin swimming. Sofia: Pensoft; p. 429.Google Scholar
Fish, F. E. (2004). Structure and mechanics of nonpiscine control surfaces. IEEE Journal of Oceanic Engineering, 28, 605621.Google Scholar
Rosen, M. W., & Cornford, N. E. (1971). Fluid friction of fish slimes. Nature, 234, 4951.CrossRefGoogle Scholar
Hoyt, J. W. (1975). Hydrodynamic drag reduction due to fish slimes. In Wu, T. Y., Brokaw, C. J., & Brennen, C. (Eds.), Swimming and flying in nature (Vol. 2). New York: Plenum Press; p. 1005.Google Scholar
Hoyt, J. W. (1990). Drag reduction by polymers and surfactants. In Bushnell, D. M. & Hefner, J. N. (Eds.), Viscous drag reduction in boundary layers. Washington, DC: American Institute of Aeronautics and Astronautics, Inc.; p. 510.Google Scholar
Videler, J. J., Haydar, D., Snoek, R., Hoving, H. J. T., & Szabo, B. G. (2016). Lubricating the swordfish head. Journal of Experimental Biology, 219, 19531956.CrossRefGoogle ScholarPubMed
Lang, T. G., & Daybell, D. A. (1963). Porpoise performance tests in a seawater tank. In Naval Ordinance Test Station Technical Report 3063 China Lake, CA: Naval Ordinance Test Station.Google Scholar
Fish, F. E. (2005). A porpoise for power. Journal of Experimental Biology, 208, 977978.Google Scholar
Fish, F. E. (2006). Limits of nature and advances of technology in marine systems: What does biomimetics have to offer to aquatic robots? Applied Bionics and Biomechanics, 3, 4960.Google Scholar
Fish, F. E., Legas, P., Williams, T. M., & Wei, T. (2014). Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. Journal of Experimental Biology, 217, 252260.CrossRefGoogle ScholarPubMed
Fish, F. E. (1984). Mechanics, power output, and efficiency of the swimming muskrat (Ondatra zibethicus). Journal of Experimental Biology, 110, 183201.CrossRefGoogle ScholarPubMed
Fish, F. E. (1995). Kinematics of ducklings swimming in formation: Energetic consequences of position. Journal of Experimental Zoology, 272, 111.Google Scholar
Daniel, T. L. (1984). Unsteady aspects of aquatic locomotion. American Zoologist, 24, 121134.Google Scholar
Daniel, T. L., & Webb, P. W. (1987). Physical determinants of locomotion. In Dejours, P., Bolis, L., Taylor, C. R., & Weibel, E. R. (Eds.), Comparative physiology: Life in water and on land. New York: Liviana Press, Springer-Verlag; p. 556.Google Scholar
Fish, F. E., Innes, S., & Ronald, K. (1988). Kinematics and estimated thrust production of swimming harp and ringed seals. Journal of Experimental Biology, 137, 157173.Google Scholar
Daniel, T., Jordan, C., & Grunbaum, D. (1992). Hydromechanics of swimming. In Alexander, R. N. (Ed.), Advances in comparative and environmental physiology (Vol. 11). London: Springer-Verlag; p. 304.Google Scholar
Anderson, J. M. (1998). The vorticity control unmanned undersea vehicle: A biologically inspired autonomous vehicle. In Meng, J. C. S. (Ed.), Proceedings of the international symposium on seawater drag reduction. Newport, RI: Naval Undersea Warfare Center; pp. 479483.Google Scholar
Fish, F. E. (2010). Swimming strategies for energy economy. In Domenici, P. & Kapoor, B. G. (Eds.), Fish swimming: An etho-ecological perspective. Enfield, NH: Science Publishers; p. 534.Google Scholar
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight. Journal of Fluid Mechanics, 410, 323341.Google Scholar
Van Dam, C. P. (1987). Efficiency characteristics of crescent-shaped wings and caudal fins. Nature, 325, 435437.Google Scholar
Alexander, R. N. (1983). Animal mechanics. Oxford: Blackwell; p. 301.Google Scholar
Blake, R. W. (1979). The mechanics of labriform locomotion. I. Labriform locomotion in the angelfish (Pterophyllum eimekei): An analysis of the power stroke. Journal of Experimental Biology, 82, 255271.Google Scholar
Blake, R. W. (1980). The mechanics of labriform locomotion. II. An analysis of the recovery stroke and the overall fin-beat cycle propulsive efficiency in the angelfish. Journal of Experimental Biology, 85, 337342.Google Scholar
Fish, F. E. (1998). Comparative kinematics and hydrodynamics of odontocete cetaceans: Morphological and ecological correlates with swimming performance. Journal of Experimental Biology, 201, 28672877.Google Scholar
Ellington, C. P., van den Berg, C., Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature, 384, 626630.Google Scholar
Dickinson, M. H., Lehmann, F.-O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284, 19541960.Google Scholar
Fierstine, H. L., & Walters, V. (1968). Studies of locomotion and anatomy of scombrid fishes. Memoirs of the Southern California Academy of Sciences, 6, 131.Google Scholar
Fish, F. E., & Lauder, G. V. (2006). Passive and active flow control by swimming fishes and mammals. Annual Review of Fluid Mechanics, 38, 193224.Google Scholar
Fish, F. E., Nusbaum, M. K., Beneski, J. T., & Ketten, D. R. (2006). Passive cambering and flexible propulsors: Cetacean flukes. Bioinspiration and Biomimetics, 1, S42S48.Google Scholar
Katz, J., & Weihs, D. (1978). Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. Journal of Fluid Mechanics, 88, 485497.CrossRefGoogle Scholar
Prempraneerach, P., Hover, F. S., & Triantafyllou, M. S. (2003). The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proceedings of the Thirteenth International Symposium on Unmanned Untethered Submersible Technology: Proceedings of the Special Session on Bio-Engineering Research Related to Autonomous Underwater Vehicles. Lee, NH: Autonomous Undersea Systems Institute.Google Scholar
Liu, P. & Bose, N. (1997). Propulsive performance from oscillating propulsors with spanwise flexibility. Proceedings of the Royal Society of London A, 453, 17631770.Google Scholar
Katz, J., & Weihs, D. (1979). Large amplitude unsteady motion of a flexible slender propulsor. Journal of Fluid Mechanics, 90, 713723.Google Scholar
Bose, N., & Lien, J. (1989). Propulsion of a fin whale (Balaenoptera physalus): Why the fin whale is a fast swimmer. Proceedings of the Royal Society of London B, 237, 175200.Google Scholar
Bose, N. (1995). Performance of chordwise flexible oscillating propulsors using a time-domain panel method. International Shipbuilding Progress, 42, 281294.Google Scholar
Moored, K. W., Dewey, P. A., Boschitsch, B. M., Smits, A. J., & Haj-Hariri, H. (2014). Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors. Physics of Fluids, 26, 041905.Google Scholar
Ren, Y., Liu, G., & Dong, H. (2015). Effect of surface morphing on the wake structure and performance of pitching-rolling plates. 53rd AIAA Aerospace Sciences Meeting, AIAA-2015-1490, Kissimmee, FL.Google Scholar
Webb, P. W., & de Buffrénil, V. (1990). Locomotion in the biology of large aquatic vertebrates. Transactions of the American Fisheries Society, 119, 629641.2.3.CO;2>CrossRefGoogle Scholar
Breder, C. M. (1926). The locomotion of fishes. Zoologica, 4, 159297.Google Scholar
Robinson, J. A. (1975). The locomotion of plesiosaurs. Neues Jahrbuch für Geologie und Paläontologie, 149, 286332.Google Scholar
Lang, T. G. (1966). Hydrodynamic analysis of dolphin fin profiles. Nature, 209, 11101111.Google Scholar
Howell, A. B. (1930). Aquatic mammals. Springfield, IL: Charles C. Thomas; p. 338.Google Scholar
Massare, J. A. (1988). Swimming capabilities of Mesozoic marine reptiles: Implications for method of predation. Paleobiology, 14, 187205.Google Scholar
Fish, F. E. (2000). Biomechanics and energetics in aquatic and semiaquatic mammals: Platypus to whale. Physiological and Biochemical Zoology, 73, 683698.Google Scholar
Gordon, K. R. (1981). Locomotor behaviour of the walrus (Odobenus). Journal of Zoology, London, 195, 349367.Google Scholar
Klausewitz, W. (1964). Der lokomotionsmodus der flugelrochen (Myliobatoidei). Zoologischer Anzeiger, 173, 111120.Google Scholar
Lindsey, , (1978). Form, function, and locomotory habits in fish. In Hoar, W. S. & Randall, D. J. (Eds.), Fish physiology: Locomotion (Vol. 7). New York: Academic Press; p. 576.Google Scholar
Heine, C. (1992). Mechanics of flapping fin locomotion in the cownose ray, Rhinoptera bonasus (Elasmobranchii: Myliobatidae). [PhD Dissertation]. Durham, NC: Duke University.Google Scholar
Rosenberger, L. J. (2001). Pectoral fin locomotion in batoid fishes – undulation versus oscillation. Journal of Experimental Biology, 204, 379394.Google Scholar
Fish, F. E., Schreiber, C. M., Moored, K. M., Liu, G., Dong, H., & Bart-Smith, H. (2016). Hydrodynamic performance of aquatic flapping: Efficiency of underwater flight in the manta. Aerospace, 3, 20. doi:10.3390/aerospace3030020Google Scholar
Godfrey, S. J. (1984). Additional observations of subaquaeous locomotion in the California sea lion (Zalophus californianus). Aquatic Mammals, 11(2), 5357.Google Scholar
Feldkamp, S. D. (1987). Foreflipper propulsion in the California sea lion, Zalophus californianus. Journal of Zoology, London, 212, 4357.Google Scholar
Wyneken, J. (1997). Sea turtle locomotion: Mechanisms, behavior, and energetics. In Lutz, PL & Musick, JA (Eds.), The biology of sea turtles. Boca Raton, FL: CRC Press; p. 432.Google Scholar
Motani, R. (2002). Scaling effects in caudal fin propulsion and the speed of ichthyosaurs. Nature, 415, 309312.Google Scholar
Rivera, A. R. V., Wyneken, J., & Blob, R. W. (2011). Forelimb kinematics and motor patterns of swimming loggerhead sea turtles (Caretta caretta): Are motor patterns conserved in the evolution of new locomotor strategies? Journal of Experimental Biology, 214, 33143323.Google Scholar
Barsukov, V. V. (1960). The speed of movement of fishes. Priroda, 3, 103104.Google Scholar
Gudger, E. W. (1940). The alleged pugnacity of the swordfish and the spearfishes as shown by their attacks on vessels: A study of their behavior and the structures which make possible these attacks. Memoirs of the Royal Asiatic Society of Bengal, 12, 215315.Google Scholar
Shuleykin, V. V. (1949). Essays on physics of the sea. Moskva: Akademi Nauk, SSSR; p. 334.Google Scholar
Lane, F. W. (1941). How fast do fish swim? Country Life, 90, 534535.Google Scholar
Walters, V., & Fiersteine, H. L. (1964). Measurements of swimming speeds of yellowfin tuna and wahoo. Nature, 202, 208209.Google Scholar
Berzin, A. A. (1972). The sperm whale. Jerusalem: Israel Program for Scientific Translation; p. 394.Google Scholar
Williamson, G. R. (1972). The true body shape of rorqual whales. Journal of Zoology, London, 167, 277286.Google Scholar
Tinsley, J. B. (1984). The sailfish: Swashbuckler of the open seas. Gainesville, FL: University of Florida Press; p. 216.Google Scholar
Tucker, V. A. (1970). Energetic cost of locomotion in animals. Comparative Biochemistry and Physiology, 34, 841846.Google Scholar
Tucker, V. A. (1975). The energetic cost of moving about. American Scientist, 63, 413419.Google Scholar
Schmidt-Nielsen, K. (1972). Locomotion: Energy cost of swimming, flying, and running. Science, 177, 222228.Google Scholar
Prange, H. D. (1976). Energetics of swimming of a sea turtle. Journal of Experimental Biology, 64, 112.Google Scholar
Williams, T. M., & Kooyman, G. L. (1985). Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiological Zoology, 58, 576589.Google Scholar
Williams, T. M. (1987). Approaches for the study of exercise physiology and hydrodynamics in marine mammals. Huntley, A. C., Costa, D., Worthy, G. A. J., & Castellini, M. A. (Eds.), Approaches to marine mammal energetics. Yarmouth Port, MA: Society for Marine Mammalogy; p. 253.Google Scholar
Williams, T. M. (1999). The evolution of cost efficient swimming in marine mammals: Limits to energetic optimization. Philosophical Transactions Royal Society of London B Biological Sciences, 353, 19Google Scholar
Sepulveda, C. H., & Dickson, K. A. (2000). Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). Journal of Experimental Biology, 203, 30893101.Google Scholar
Guinet, C., Domenici, P., De Stephanis, R., Barrett-Lennard, L., Ford, J. K. B., & Verborgh, P. (2007). Killer whale predation on bluefin tuna: Exploring the hypothesis of the endurance-exhaustion technique. Marine Ecology Progress Series, 347, 111119.Google Scholar
Golenchenko, A. P. (1960). The swordfish. Priroda, 4, 115.Google Scholar
Carey, F. G., & Robinson, B. H. (1981). Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. Fisheries Bulletin, 79, 277292.Google Scholar
Sedberry, G., & Loefer, J. (2001). Satellite telemetry tracking of swordfish, Xiphias gladius, off the eastern United States. Marine Biology, 139, 355360.Google Scholar
Graham, R. T., Witt, M. J., Castellanos, D. W., et al.(2012). Satellite tracking of manta rays highlights challenges to their conservation. PLOS ONE, 7, e36834.CrossRefGoogle ScholarPubMed
Richardson, W. J., & Finley, K. J. (1989). Comparison of behavior of bowhead whales of the Davis Strait and Bering/Beaufort stocks. NTIS No. PB89–195556. King City, ON: LGL Ltd.Google Scholar
Ponganis, P. J., Ponganis, E. P., Ponganis, K. V., Kooyman, G. L., Gentry, R. L., & Trillmich, F. (1990). Swimming velocities in otariids. Canadian Journal of Zoology, 68, 21052112.Google Scholar
Sato, K., Watanuki, Y., Takahashi, A., et al. (2007). Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceansProceedings of the Royal Society of London B: Biological Sciences274, 471477.Google Scholar
Clark, B. D., & Bemis, W. (1979). Kinematics of swimming of penguins at the Detroit ZooJournal of Zoology188, 411428.CrossRefGoogle Scholar
Culik, B., Wilson, R., & Bannasch, R. U. (1994). Underwater swimming at low energetic cost by pygoscelid penguins. Journal of Experimental Biology, 197, 6578.Google Scholar
Eckert, S. A. (2002). Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St Croix, US Virgin Islands. Journal of Experimental Biology, 205, 36893697.Google Scholar
Luschi, P., Hays, G. C., & Papi, F. (2003). A review of long-distance movements by marine turtles, and the possible role of ocean currents. Oikos, 103, 293302.Google Scholar
James, M. C., Myers, R. A., & Ottensmeyer, C. A. (2005). Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycleProceedings of the Royal Society of London B: Biological Sciences272, 15471555.Google Scholar
Lang, T. G. (1975). Speed, power, and drag measurements of dolphins and porpoises. In Wu, T. Y., Brokaw, C J., & Brennen, C. (Eds.), Swimming and flying in nature. New York: Plenum Press; p. 1005.Google Scholar
Johannessen, C. L., & Harder, J. A. (1960). Sustained swimming speeds of dolphins. Science, 132, 15501551.Google Scholar
Daniel, T. L. (1991). Efficiency in aquatic locomotion: Limitations from single cells to animals. In Blake, R. W. (Ed.), Efficiency and economy in animal physiology. Cambridge: Cambridge University Press; p. 187.Google Scholar
Saunders, H. E. (1957). Hydrodynamics in ship design (Vol. II). New York: Society for Naval Architects and Marine Engineers; p. 980.Google Scholar
Larrabee, E. E. (1980). The screw propeller. Scientific American, 243, 134148.Google Scholar
Magnuson, J. J. (1978). Locomotion by scombrid fishes: Hydrodynamics, morphology and behaviour. In Hoar, W. S. & Randall, J. D. (Eds.), Fish physiology (Vol. 7). London: Academic Press; p. 576.Google Scholar
Alexander, R. N. (1988). Elastic mechanisms in animal movement. Cambridge: Cambridge University Press; p. 141.Google Scholar
Pabst, D. A. (1996). Springs in swimming animals. American Zoologist, 36, 723735.Google Scholar
Nakashima, M., & Ono, K. (1999). Experimental study of two-joint dolphin robot. In Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology, 99-8-01. Lee, NH: Autonomous Undersea Systems Institute.Google Scholar
Curren, K. C., Bose, N., & Lien, J. (1994). Swimming kinematics of a harbor porpoise (Phocoena phocoena) and an Atlantic white-sided dolphin (Lagenorhynchus acutus). Marine Mammal Science, 10, 485492.Google Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A., & Smits, A. J. (2013). Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 732, 2946.Google Scholar
Bose, N., Lien, J., & Ahia, J. (1990). Measurements of the bodies and flukes of several cetacean species. Proceeding of the Royal Society of London B, 242, 163173.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S., & Grosenbaugh, M. A. (1993). Optimal thrust development in oscillating foils with application to fish propulsion. Journal of Fluids and Structures, 7, 205224.CrossRefGoogle Scholar
Triantafyllou, M. S. Triantafyllou, G. S., & Yue, D. K. (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics, 32, 3353.Google Scholar
Taylor, G. K., Nudds, R. L., & Thomas, A. L. R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425, 707711.Google Scholar
Rohr, J. J., & Fish, F. E. (2004). Strouhal numbers and optimization of swimming by odontocete cetaceans. Journal of Experimental Biology, 207, 16331642.Google Scholar
Videler, J. J., & Weihs, D. (1982). Energetic advantages of burst-and-coast swimming of fish at high speedsJournal of Experimental Biology97, 169178.Google Scholar
Blake, R. W. (1983). Functional design and burst-and-coast swimming in fishesCanadian Journal of Zoology61, 24912494.Google Scholar
Fish, F. E., Fegely, J. F., & Xanthopoulos, C. J. (1991). Burst-and-coast swimming in schooling fish (Notemigonus crysoleucas) with implications for energy economyComparative Biochemistry and Physiology Part A: Physiology100, 633637.Google Scholar
Wu, G., Yang, Y., & Zeng, L. (2007). Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi)Journal of Experimental Biology210, 21812191.Google Scholar
Weihs, D. (1974). Energetic advantages of burst swimming of fish. Journal of Theoretical Biology, 48, 215229.Google Scholar
Chung, M. H. (2009). On burst-and-coast swimming performance in fish-like locomotion. Bioinspiration & Biomimetics4, 036001.Google Scholar
Magnuson, J. J., & Gooding, R. M. (1971). Color patterns of pilotfish (Naucrates ductor) and their possible significance. Copeia, 1971, 314316.Google Scholar
Liao, J., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003). The Kármán gait: Novel body kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology, 206, 10591073.Google Scholar
Kelly, H. R. (1959). A two-body problem in the echelon-formation swimming of porpoise. In U. S. Naval Ordinance Test Station, Technical Note 40606-1. China Lake, CA: Naval Ordinance Test Station.Google Scholar
Weihs, D. (2004). The hydrodynamics of dolphin drafting. Journal of Biology, 3, 8.18.16.Google Scholar
Fish, F. E., Goetz, K. T., Rugh, D. J., & Brattström, L. V. (2013). Hydrodynamic patterns associated with echelon formation swimming by feeding bowhead whales (Balaena mysticetus). Marine Mammal Science, 29, E498E507.Google Scholar
Weihs, D. (1973). Hydromechanics of fish schooling. Nature, 241, 290291.Google Scholar
Fish, F. E. (1999). Energetics of swimming and flying in formation. Comments on Theoretical Biology, 5, 283304.Google Scholar
Webb, P. W. (1998). Entrainment by river chub Nocomis micropogon and smallmouth bass Micropterus dolomieu on cylinders. Journal of Experimental Biology, 201, 24032412.Google Scholar
Liao, J., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003a). Fish exploiting vortices decrease muscle activity. Science, 302, 15661569.Google Scholar
Liao, J. (2004). Neuromuscular control of trout swimming in a vortex street: Implications for energy economy during the Kármán gait. Journal of Experimental Biology, 207, 34953506.Google Scholar
Webb, P. W. (2004). Maneuverability: General issuesIEEE Journal of Oceanic Engineering29, 547555.Google Scholar
Howland, H. C. (1974). Optimal strategies for predator avoidance: The relative importance of speed and manoeuvrability. Journal of Theoretical Biology, 47, 333350.Google Scholar
Webb, P. W. (1976). The effect of size on the fast-start performance of rainbow trout, Salmo gairdneri, and a consideration of piscivorous predator-prey interactions. Journal of Experimental Biology, 65, 157177.Google Scholar
Domenici, P., & Blake, R. W. (1997). The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 200, 11651178.Google Scholar
Walker, J. A. (2000). Does a rigid body limit maneuverability? Journal of Experimental Biology, 203, 33913396.Google Scholar
Walker, J. A. (2004).Kinematics and performance of maneuvering control surfaces in teleost fishes. Journal of Oceanic Engineering, 29, 572584.Google Scholar
Domenici, P. (2001). The scaling of locomotor performance in predator-prey encounters: From fish to killer whales. Comparative Biochemistry and Physiology Part A, 131, 169182.Google Scholar
Parson, J., Fish, F. E., & Nicastro, A. J. (2011). Turning performance in batoid rays: Limitations of a rigid body. Journal of Experimental Marine Biology and Ecology, 402, 1218.Google Scholar
Webb, P. W. (2006). Stability and maneuverability. In Shadwick, R. E. & Lauder, G. V. (Eds.), Fish physiology; fish biomechanics (Vol. 23). Amsterdam: Academic Press; p. 542.Google Scholar
Burcher, R., & Rydill, L. (1994). Concepts in submarine design. Cambridge: Cambridge University Press; p. 300.Google Scholar
Fish, F. E. (2002). Balancing requirements for stability and maneuverability in cetaceans. Integrative and Comparative Biology, 42, 8593.Google Scholar
Triantafyllou, M. S. (2017). Tuna fin hydraulics inspire aquatic robotics. Science, 357, 251252.Google Scholar
Marchaj, C. A. (1988) Aero-hydrodynamics of sailing. Camden, ME: International Marine Publishing; p. 743.Google Scholar
Fish, F. E., & Nicastro, A. J. (2003). Aquatic turning performance by the whirligig beetle: Constraints on maneuverability by a rigid biological system. Journal of Experimental Biology, 206, 16491656.Google Scholar
Harris, J. E. (1936). The role of the fins in the equilibrium of the swimming fish. I. Wind-tunnel tests on a model of Mustelus canis (Mitchill). Journal of Experimental Biology, 13, 476493.Google Scholar
Fish, F. E., Hurley, J., & Costa, D. P. (2003). Maneuverability by the sea lion Zalophus californianus: Turning performance of an unstable body design. Journal of Experimental Biology, 206, 667674.Google Scholar
Webb, P. W. (1983). Speed, acceleration and manoeuverability of two teleost fishes. Journal of Experimental Biology, 102, 115122.Google Scholar
Gerstner, C. L. (1999). Maneuverability of four species of coral-reef fish that differ in body and pectoral-fin morphology. Canadian Journal of Zoology, 77, 11021110.Google Scholar
Kajiura, S. M., Forni, J. B., & Summers, A. P. (2003). Maneuvering in juvenile carcharhinid and sphyrnid sharks: The role of the hammerhead shark cephalofoil. Zoology, 106, 1928.Google Scholar
Bandyopadhyay, P. R., Rice, J. Q., Corriveau, P. J., & Macy, W. K. (1995). Maneuvering hydrodynamics of fish and small underwater vehicles, including the concept of an agile underwater vehicle. NUWC-NCT Technical Report, 10, 494.Google Scholar
Blake, R. W., Chatters, L. M., & Domenici, P. (1995). Turning radius of yellowfin tuna (Thunnus albacares) in unsteady swimming manoeuvres. Journal of Fish Biology, 46, 536538.Google Scholar
Norberg, U. M. (1990). Vertebrate flight: Mechanics, physiology, morphology, ecology and evolution. Berlin: Springer-Verlag; p. 290.Google Scholar
Webb, P. W. (1994). The biology of fish swimming. In Maddock, L., Bone, Q., & Rayner, J. M. V. (Eds.), Mechanics and physiology of animal swimming. Cambridge: Cambridge University Press; p. 250.Google Scholar
Maresh, J. L., Fish, F. E., Nowacek, D. P., Nowacek, S. M., & Wells, R. S. (2004). High performance turning capabilities during foraging by bottlenose dolphins (Tursiops truncatus). Marine Mammal Science, 20, 498509.Google Scholar
Hui, C. A. (1985). Maneuverability of the Humboldt penguin (Spheniscus humboldti) during swimming. Canadian Journal of Zoology, 63, 21652167.Google Scholar
Foyle, T. P. & O’Dor, R. K. (1988). Predatory strategies of squid (Illex illecebrosus) attacking small and large fish. Marine Behavior and Physiology, 13, 155168.Google Scholar
Frey, E., & Salisbury, S. W. (2000). The kinematics of aquatic locomotion in Osteolaemus tetraspis. In Grigg, G. C., Seebacher, F., & Franklin, C. E. (Eds.), Cope crocodilian biology and evolution. Chipping Norton, UK: Surry Beatty & Sons; p. 446.Google Scholar
Fish, F. E. (1997). Biological designs for enhanced maneuverability: Analysis of marine mammal performance. In Proceedings of the 10th International Symposium on Unmanned Untethered Submersible Technology, pp. 109–117. Lee, NH: Autonomous Undersea Systems Institute.Google Scholar
Rivera, G., Rivera, A. R., Dougherty, E. E., & Blob, R. W. (2006). Aquatic turning performance of painted turtles (Chrysemys picta) and functional consequences of a rigid body design. Journal of Experimental Biology, 209, 42034213.Google Scholar
Helmer, D., Geurten, B. R., Dehnhardt, G., & Hanke, F. D. (2016). Saccadic movement strategy in common cuttlefish (Sepia officinalis). Frontiers in Physiology, 7, 660. doi:10.3389/fphys.2016.00660Google Scholar
Geurten, B. R., Niesterok, B., Dehnhardt, G., & Hanke, F. D. (2017). Saccadic movement strategy in a semiaquatic species – The harbour seal (Phoca vitulina). Journal of Experimental Biology, 220, 15031508.Google Scholar
Jastrebsky, R. A., Bartol, I. K., & Krueger, P. S. (2017). Turning performance of brief squid Lolliguncula brevis during attacks on shrimp and fish. Journal of Experimental Biology, 220, 908919.Google Scholar
Miller, (1991).Google Scholar
Duffy, C. A. J., & Abbott, D. (2003). Sightings of mobulid rays from northern New Zealand, with confirmation of the occurrence of Manta birostris in New Zealand waters. New Zealand Journal of Marine and Freshwater Research, 37, 715721.Google Scholar
Fish, F. E., Smits, A. J., Haj-Hariri, H., Bart-Smith, H., & Iwasaki, T. (2012). Biomimetic swimmer inspired by the manta ray. In Bar-Cohen, Y. (Ed.), Biomimetics: Nature-based innovation. Boca Raton, FL: CRC Press; p. 735.Google Scholar
Goldbogen, J. A., Calambokidis, J., Friedlaender, A. S., et al. (2013). Underwater acrobatics by the world’s largest predator: 360° rolling manoeuvres by lunge-feeding blue whales. Biology Letters, 9, 20120986.Google Scholar
Segre, P. S., Cade, D. E., Fish, F. E., et al. (2016). Hydrodynamic properties of fin whale flippers predict maximum rolling performance. Journal of Experimental Biology, 219, 33153320.Google ScholarPubMed
Fish, F. E., & Battle, J. M. (1995). Hydrodynamic design of the humpback whale flipper. Journal of Morphology, 225, 5160.Google Scholar
Carlton, J. S. (2012). Marine propellers and propulsion. Amsterdam: Elsevier; p. 516.Google Scholar
Tavolga, W. N. (1967). Underwater sound in marine biology. Underwater Acoustics, 2, 3541.Google Scholar
Tavolga, W. N. (1971). Sound production and detection. In Hoar, W. S. & Randall, D. J. (Eds.), Fish physiology (Vol. V). New York: Academic Press; p. 600.Google Scholar
Moulton, J. M. (1960). Swimming sounds and the schooling of fishes. Biological Bulletin, 119, 210223.Google Scholar
Kasumyan, A. O. (2008). Sounds and sound production in fishes. Journal of Ichthyology, 48, 9811030.Google Scholar
Geer, D. (2001). Propeller handbook. Camden, ME: International Marine Publishing; p. 152.Google Scholar
Iosilevskii, G., & Weihs, D. (2008). Speed limits on swimming of fishes and cetaceans. Journal of the Royal Society Interface, 5, 329338.Google Scholar
Miklosovic, D. S., Murray, M. M., Howle, L. E. & Fish, F. E. (2004) Leading edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16, L39L42.Google Scholar
Fish, F. E., Weber, P. W., Murray, M. M., & Howle, L. E. (2011). The humpback whale’s flipper: Application of bio-inspired tubercle technology. Integrative and Comparative Biology, 51, 203213.Google Scholar
Fish, F. E., Weber, P. W., Murray, M. M., & Howle, L. E. (2011). Marine applications of the biomimetic humpback whale flipper. Marine Technology Society Journal, 45, 198207.Google Scholar
Hansen, K. L., Kelso, R. M., & Doolan, C. J. (2010). Reduction of flow induced tonal noise through leading edge tubercle modifications. In 16th AIAA/CEAS Aeroacoustics Conference, 7-9 June 2010, Stockholm, Sweden: AIAA/CEAS.Google Scholar
Lau, A. S. H., & Kim, J. W. (2013). The effect of wavy leading edges on aerofoil-gust interaction noise. Journal of Sound and Vibration, 332, 62346253.Google Scholar
Polacsek, C., Reboul, G., Clair, V., Le Garrec, T., & Deniau, H. (2011). Turbulence-airfoil interaction noise reduction using wavy leading edge: An experimental and numerical study. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2011. pp. 44644474. Osaka, Japan: Institute of Noise Control Engineering.Google Scholar
Kim, J. W., Haeri, S., & Joseph, P. (2016). On the reduction of aerofoil–turbulence interaction noise associated with wavy leading edges. Journal of Fluid Mechanics, 792, 526552.Google Scholar
Shi, W., Atlar, M., Rosli, R., Aktas, B., & Norman, R. (2016). Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs. Ocean Engineering, 121, 143155.Google Scholar
Wang, J., Zhang, C., Wu, Z., Wharton, J., & Ren, L. (2017). Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures. Journal of Sound and Vibration, 394, 4658.Google Scholar
Vogel, S. (1998). Cat’s paws and catapults. New York: W. W. Norton; p. 382.Google Scholar
Forbes, P. (2005). The gecko’s foot. New York: Norton; p. 272.Google Scholar
Dabiri, J. O. (2007). Renewable fluid dynamic energy derived from aquatic animal locomotion. Bioinspiration & Biomimetics, 2, L1.Google Scholar
Bar-Cohen, Y. (2006). Biomimetics –Using nature to inspire human innovation. Bioinspiration & Biomimetics, 1, P1P12.CrossRefGoogle ScholarPubMed
Allen, R. (2010). Bulletproof feathers. Chicago: University of Chicago Press; p. 192.Google Scholar
Ralston, E., & ,Swain, G. (2009). Bioinspiration – The solution for biofouling control? Bioinspiration & Biomimetics, 4, 015007.Google Scholar
Taubes, G. (2000). Biologists and engineers create a new generation of robots that imitate life. Science, 288, 8083.Google Scholar
Fish, F. E. (2009). Biomimetics: Determining engineering opportunities from nature. Proceedings SPIE Conference, 7401, 740109.Google Scholar
Mohseni, K., Mitta, R., & Fish, F. E. (2006). Preface: Special issue featuring selected papers from the mini-symposium on biomimetic & bio-inspired propulsion. Bioinspiration and Biomimetics, 1, E01.Google Scholar
Nakashima, M., & Ono, K. (2002). Development of a two-joint dolphin robot In Ayers, J., Davis, J. L., & Rudolph, A. (Eds.), Neurotechnology for biomimetric robots. Cambridge, MA: MIT Press; p. 650.Google Scholar
Anderson, J. M., & Chhabra, N. K. (2002). Maneuvering and stability performance of a robotic tuna. Integrative and Comparative Biology, 42, 118126.Google Scholar
Kato, N. (2005). Median and paired fin controllers for biomimetic marine vehicles. Applied Mechanics Reviews, 58, 238252.Google Scholar
Lauder, G. V., Anderson, E. J., Tangorra, J., & Madden, P. G. (2007). Fish biorobotics: Kinematics and hydrodynamics of self-propulsion. Journal of Experimental Biology, 210, 27672780.Google Scholar
Bozkurttas, M., Tangorra, J., Lauder, G., & Mittal, R. (2008). Understanding the hydrodynamics of swimming: From fish fins to flexible propulsors for autonomous underwater vehicles. Advances in Science and Technology, 58, 193202.Google Scholar
Low, K. H., & Chong, C. W. (2010). Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Bioinspiration & Biomimetics, 5, 046002.Google Scholar
Low, K. H. (2011). Current and future trends of biologically inspired underwater vehicles. IEEE Defense Science Research Conference and Expo (DSR), 2011, 18.Google Scholar
Moored, K. W., Fish, F. E., Kemp, T. H., & Bart-Smith, H. (2011). Batoid fishes: Inspiration for the next generation of underwater robots. Marine Technology Society Journal, 45, 99109.Google Scholar
Low, K. H., Hu, T., Mohammed, S., Tangorra, J., & Kovac, M. (2015). Perspectives on biologically inspired hybrid and multi-modal locomotion. Bioinspiration & Biomimetics, 10, 020301.Google Scholar
Raj, A., & Thakur, A. (2016). Fish-inspired robots: Design, sensing, actuation, and autonomy – A review of research. Bioinspiration & Biomimetics, 11, 031001.Google Scholar
Kumph, J. M. (2000). Maneuvering of a robotic pike [Master Thesis]. Cambridge, MA: Massachusetts Institute of Technology; p. 76.Google Scholar
Stanway, J. (2008). The turtle and the robot. Oceanus, 47, 2225.Google Scholar
Kirk, J., & Klein, A. (1987). Ships of the US Navy. New York: Exeter Books; p. 192.Google Scholar
Ashley, S. (2001). Warp drive underwater. Scientific American, 284, 7079.Google Scholar
Zhan, K., Yu, B., & Wang, J. (2011). Simulations of the anti-torpedo tactic of the conventional submarine using decoys and jammers. Applied Mechanics and Materials, 65, 165168.Google Scholar
Basic, J., & Blagojevic, B. (2015). Hydrodynamic performance of an autonomous underwater vehicle with a swivel tail. In Guedes Soares, C., Dejhalla, R. & Pavletic, D. (Eds.), Towards green marine technology and transport. Boca Raton, FL: CRC Press; p. 922.Google Scholar
Menozzi, A., Leinhos, H. A., Beal, D. N., & Bandyopadhyay, P. (2008). Open-loop control of a multifin biorobotic rigid underwater vehicle. IEEE Journal of Oceanic Engineering, 33, 5968.Google Scholar
Liang, J., Wang, T., & Wen, L. (2010). Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics, 28, 7079.Google Scholar
Fish, F. E., Dong, H., Zhu, J., & Bart-Smith, H. (2017). Swimming kinematics of mobuliform rays: Oscillatory winged propulsion by large pelagic batoids. Marine Technology Society Journal, 51(5), 3547.Google Scholar
Pavlov, V., Rosental, B., Hansen, N. F., et al. (2017). Hydraulic control of tuna fins: A role for the lymphatic system in vertebrate locomotion. Science, 357, 310314.Google Scholar
Singh, H., Bellingham, J. G., Hover, F., et al. (2001). Docking for an autonomous ocean sampling network. IEEE Journal of Oceanic Engineering, 26, 498514.Google Scholar
Colgate, J. E., & Lynch, K. M. (2004). Mechanics and control of swimming: A preview. IEEE Journal of Oceanic Engineering, 29, 660673.Google Scholar
Murthy, K., & Rock, S. (2010). Spline-based trajectory planning techniques for benthic AUV operations. In Proceedings of IEEE Autonomous Underwater Vehicles (AUV) Conference. Stanford, CA: IEEE/OES; pp. 19.Google Scholar
Fish, F. E. (1993). Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus). Journal of Experimental Biology, 185, 179193.Google Scholar
Fish, F. E. (2020). Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspiration & Biomimetics, 15, 025001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×