Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T01:29:12.985Z Has data issue: false hasContentIssue false

9 - Oscillations and waves of intracellular calcium

Published online by Cambridge University Press:  26 February 2010

Albert Goldbeter
Affiliation:
Université Libre de Bruxelles
Get access

Summary

Experimental observations on cytosolic Ca2+ oscillations

Ca2+ oscillations are among the most significant findings of the last decade in the field of intracellular signalling. Together with the mitotic oscillator, which underlies the eukaryotic cell division cycle (examined in chapter 10), Ca2+ oscillations are also one of the most important periodic phenomena uncovered in recent years in the field of biochemical and cellular oscillators. Ca2+ oscillations are of interest for a variety of reasons. First, they occur in a large number of cell types, either spontaneously or after stimulation by hormones or neurotransmitters. Second, it is by now clear that they represent the oscillatory phenomenon that is the most widespread at the cellular level, besides the rhythms encountered in electrically excitable cells. Third, Ca2+ oscillations are often associated with the propagation of Ca2+ waves within the cytosol, and sometimes between adjacent cells; even though its physiological significance remains to be determined, this phenomenon has become one of the most important examples of spatiotemporal organization at the cellular level.

Since their first direct observation in fertilized mouse oocytes (Cuthbertson & Cobbold, 1985) and hormone-stimulated hepatocytes (Woods et al., 1986,1987), which followed their earlier, theoretical prediction (Rapp & Berridge, 1977; Kuba & Takeshita, 1981) and indirect characterization (Rapp & Berridge, 1981), the number of experimental reports on Ca2+ oscillations has mushroomed at an increasing pace in recent years; these experimental results have been examined in several reviews (Berridge & Galione, 1988; Berridge, Cobbold & Cuthbertson, 1988; Berridge, 1989, 1990; Cuthbertson, 1989; Rink & Jacob, 1989; Cobbold & Cuthbertson, 1990; Jacob, 1990a; Petersen & Wakui, 1990; Tsien & Tsien, 1990; Meyer & Stryer, 1991; Tsunoda, 1991; Fewtrell, 1993) and in a special issue of Cell Calcium (Cuthbertson & Cobbold, 1991).

Type
Chapter
Information
Biochemical Oscillations and Cellular Rhythms
The Molecular Bases of Periodic and Chaotic Behaviour
, pp. 351 - 406
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×