Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: December 2016

Chapter 5 - Genetic approaches to neurodegenerative disease

1.Manolio, TA. Bringing genome-wide association findings into clinical use. Nature Reviews Genetics. 2013 Aug;14(8):549–58.
2.Boxer, AL, Gold, M, Huey, E, Gao, FB, Burton, EA, Chow, T, et al. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2013 Mar;9(2):176–88.
3.Goldman, JS, Farmer, JM, Wood, EM, Johnson, JK, Boxer, A, Neuhaus, J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005 Dec 13;65(11):1817–9.
4.Cruts, M, Theuns, J, Van Broeckhoven, C. Locus-specific mutation databases for neurodegenerative brain diseases. Human Mutation. 2012 Sep;33(9):1340–4.
5.Cohn-Hokke, PE, Elting, MW, Pijnenburg, YA, van Swieten, JC. Genetics of dementia: update and guidelines for the clinician. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics. 2012 Sep;159B(6):628–43.
6.Devi, G, Ottman, R, Tang, MX, Marder, K, Stern, Y, Mayeux, R. Familial aggregation of Alzheimer disease among whites, African Americans, and Caribbean Hispanics in northern Manhattan. Archives of Neurology. 2000 Jan;57(1):72–7.
7.Vardarajan, BN, Faber, KM, Bird, TD, Bennett, DA, Rosenberg, R, Boeve, BF, et al. Age-specific incidence rates for dementia and Alzheimer disease in NIA-LOAD/NCRAD and EFIGA families: National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA). JAMA Neurology. 2014 Mar;71(3):315–23.
8.Cruchaga, C, Haller, G, Chakraverty, S, Mayo, K, Vallania, FL, Mitra, RD, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PloS One. 2012;7(2):e31039.
9.Silverman, JM, Ciresi, G, Smith, CJ, Marin, DB, Schnaider-Beeri, M. Variability of familial risk of Alzheimer disease across the late life span. Archives of General Psychiatry. 2005 May;62(5):565–73.
10.Hardy, J. A hundred years of Alzheimer’s disease research. Neuron. 2006 Oct 5;52(1):313.
11.Corder, EH, Saunders, AM, Strittmatter, WJ, Schmechel, DE, Gaskell, PC, Small, GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late-onset families. Science. 1993 Aug 13;261(5123):921–3.
12.Owen, F, Poulter, M, Lofthouse, R, Collinge, J, Crow, TJ, Risby, D, et al. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet. 1989 Jan 7;1(8628):51–2.
13.The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993 Mar 26;72(6):971–83.
14.Goate, A, Chartier-Harlin, MC, Mullan, M, Brown, J, Crawford, F, Fidani, L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991 Feb 21;349(6311):704–6.
15.Ng, SB, Turner, EH, Robertson, PD, Flygare, SD, Bigham, AW, Lee, C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009 Sep 10;461(7261):272–6.
16.Venter, JC, Adams, MD, Myers, EW, Li, PW, Mural, RJ, Sutton, GG, et al. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–51.
17.Flicek, P, Amode, MR, Barrell, D, Beal, K, Billis, K, Brent, S, et al. Ensembl 2014. Nucleic Acids Research. 2014 Jan 1;42(1):D749–55.
18.Consortium, EP, Bernstein, BE, Birney, E, Dunham, I, Green, ED, Gunter, C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):5774.
19.Levine, M, Cattoglio, C, Tjian, R. Looping back to leap forward: transcription enters a new era. Cell. 2014 Mar 27;157(1):1325.
20.Maston, GA, Evans, SK, Green, MR. Transcriptional regulatory elements in the human genome. Annual Review of Genomics and Human Genetics. 2006;7:2959.
21.Sweatt, JD. The emerging field of neuroepigenetics. Neuron. 2013 Oct 30;80(3):624–32.
22.Jirtle, RL, Skinner, MK. Environmental epigenomics and disease susceptibility. Nature Reviews Genetics. 2007 Apr;8(4):253–62.
23.Qureshi, IA, Mehler, MF. Epigenetic mechanisms governing the process of neurodegeneration. Molecular Aspects of Medicine. 2013 Jul–Aug;34(4):875–82.
24.Morris, KV, Mattick, JS. The rise of regulatory RNA. Nature Reviews Genetics. 2014 Jun;15(6):423–37.
25.Cech, TR, Steitz, JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014 Mar 27;157(1):7794.
26.Salta, E, De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurology. 2012 Feb;11(2):189200.
27.Johnson, R, Noble, W, Tartaglia, GG, Buckley, NJ. Neurodegeneration as an RNA disorder. Progress in Neurobiology. 2012 Dec;99(3):293315.
28.Qureshi, IA, Mehler, MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Reviews Neuroscience. 2012 Aug;13(8):528–41.
29.Pastori, C, Wahlestedt, C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biology. 2012 Jun;9(6):860–70.
30.Levy, S, Sutton, G, Ng, PC, Feuk, L, Halpern, AL, Walenz, BP, et al. The diploid genome sequence of an individual human. PLoS Biology. 2007 Sep 4;5(10):e254.
31.Genomes Project, C, Abecasis, GR, Auton, A, Brooks, LD, DePristo, MA, Durbin, RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012 Nov 1;491(7422):5665.
32.den Dunnen, JT, Antonarakis, SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human Mutation. 2000;15(1):712.
33.Mullaney, JM, Mills, RE, Pittard, WS, Devine, SE. Small insertions and deletions (INDELs) in human genomes. Human Molecular Genetics. 2010 Oct 15;19(R2):R131–6.
34.Wright, AF. Genetic Variation: Polymorphisms and Mutations. eLS: John Wiley & Sons, Ltd; 2001.
35.Feuk, L, Marshall, CR, Wintle, RF, Scherer, SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Human Molecular Genetics. 2006 Apr 15;15 Spec No 1:R57–66.
36.Wiseman, FK, Alford, KA, Tybulewicz, VL, Fisher, EM. Down syndrome – recent progress and future prospects. Human Molecular Genetics. 2009 Apr 15;18(R1):R75–83.
37.Cheung, VG, Burdick, JT, Hirschmann, D, Morley, M. Polymorphic variation in human meiotic recombination. American Journal of Human Genetics. 2007 Mar;80(3):526–30.
38.Slatkin, M. Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics. 2008 Jun;9(6):477–85.
39.International HapMap, C, Altshuler, DM, Gibbs, RA, Peltonen, L, Altshuler, DM, Gibbs, RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010 Sep 2;467(7311):52–8.
40.Bush, WS, Moore, JH. Chapter 11: Genome-wide association studies. PLoS Computational Biology. 2012;8(12):e1002822.
41.Gibson, G. Rare and common variants: twenty arguments. Nature Reviews Genetics. 2011 Feb;13(2):135–45.
42.Pedersen, NL, Gatz, M, Berg, S, Johansson, B. How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Annals of Neurology. 2004 Feb;55(2):180–5.
43.Sherrington, R, Rogaev, EI, Liang, Y, Rogaeva, EA, Levesque, G, Ikeda, M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995 Jun 29;375(6534):754–60.
44.Shen, J, Kelleher, RJ, 3rd. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proceedings of the National Academy of Sciences of the USA. 2007 Jan 9;104(2):403–9.
45.Levy, E, Carman, MD, Fernandez-Madrid, IJ, Power, MD, Lieberburg, I, van Duinen, SG, et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990 Jun 1;248(4959):1124–6.
46.Hutton, M, Lendon, CL, Rizzu, P, Baker, M, Froelich, S, Houlden, H, et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998 Jun 18;393(6686):702–5.
47.Baker, M, Mackenzie, IR, Pickering-Brown, SM, Gass, J, Rademakers, R, Lindholm, C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006 Aug 24;442(7105):916–9.
48.DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011 Oct 20;72(2):245–56.
49.Abel, O, Powell, JF, Andersen, PM, Al-Chalabi, A. ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Human Mutation. 2012 Sep;33(9):1345–51.
50.Rosen, DR, Siddique, T, Patterson, D, Figlewicz, DA, Sapp, P, Hentati, A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):5962.
51.Deng, HX, Hentati, A, Tainer, JA, Iqbal, Z, Cayabyab, A, Hung, WY, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993 Aug 20;261(5124):1047–51.
52.Saccon, RA, Bunton-Stasyshyn, RK, Fisher, EM, Fratta, P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain: A Journal of Neurology. 2013 Aug;136(Pt 8):2342–58.
53.Nelson, DL, Orr, HT, Warren, ST. The unstable repeats–three evolving faces of neurological disease. Neuron. 2013 Mar 6;77(5):825–43.
54.Cooper, DN, Krawczak, M, Polychronakos, C, Tyler-Smith, C, Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human Genetics. 2013 Oct;132(10):1077–130.
55.Boeve, BF, Hutton, M. Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Archives of Neurology. 2008 Apr;65(4):460–4.
56.Strachan, T, Read, AP, Strachan, T. Human Molecular Genetics. 4th edn. New York: Garland Science; 2011.
57.Kleinberger, G, Capell, A, Haass, C, Van Broeckhoven, C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Molecular Neurobiology. 2013 Feb;47(1):337–60.
58.Haraksingh, RR, Snyder, MP. Impacts of variation in the human genome on gene regulation. Journal of Molecular Biology. 2013 Nov 1;425(21):3970–7.
59.Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurology. 2013 Jun;12(6):609–22.
60.Sleegers, K, Brouwers, N, Gijselinck, I, Theuns, J, Goossens, D, Wauters, J, et al. APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain: a Journal of Neurology. 2006 Nov;129(Pt 11):2977–83.
61.Swaminathan, S, Huentelman, MJ, Corneveaux, JJ, Myers, AJ, Faber, KM, Foroud, T, et al. Analysis of copy number variation in Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. PloS One. 2012;7(12):e50640.
62.Renton, AE, Majounie, E, Waite, A, Simon-Sanchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011 Oct 20;72(2):257–68.
63.Zu, T, Gibbens, B, Doty, NS, Gomes-Pereira, M, Huguet, A, Stone, MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the USA. 2011 Jan 4;108(1):260–5.
64.Ash, PE, Bieniek, KF, Gendron, TF, Caulfield, T, Lin, WL, Dejesus-Hernandez, M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013 Feb 20;77(4):639–46.
65.Mori, K, Weng, SM, Arzberger, T, May, S, Rentzsch, K, Kremmer, E, et al. The C9ORF72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013 Mar 15;339(6125):1335–8.
66.Gitcho, MA, Baloh, RH, Chakraverty, S, Mayo, K, Norton, JB, Levitch, D, et al. TDP-43 A315T mutation in familial motor neuron disease. Annals of Neurology. 2008 Apr;63(4):535–8.
67.Kabashi, E, Valdmanis, PN, Dion, P, Spiegelman, D, McConkey, BJ, Vande Velde, C, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics. 2008 May;40(5):572–4.
68.Sreedharan, J, Blair, IP, Tripathi, VB, Hu, X, Vance, C, Rogelj, B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008 Mar 21;319(5870):1668–72.
69.Neale, BM, Sham, PC. The future of association studies: gene-based analysis and replication. American Journal of Human Genetics. 2004 Sep;75(3):353–62.
70.Pulst, SM. Genetic linkage analysis. Archives of Neurology. 1999 Jun;56(6):667–72.
71.Brunham, LR, Hayden, MR. Hunting human disease genes: lessons from the past, challenges for the future. Human Genetics. 2013 Jun;132(6):603–17.
72.Bras, J, Guerreiro, R, Hardy, J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nature Reviews Neuroscience. 2012 Jul;13(7):453–64.
73.Liu, CC, Kanekiyo, T, Xu, H, Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology. 2013 Feb;9(2):106–18.
74.Genin, E, Hannequin, D, Wallon, D, Sleegers, K, Hiltunen, M, Combarros, O, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry. 2011 Sep;16(9):903–7.
75.Dewan, A, Liu, M, Hartman, S, Zhang, SS, Liu, DT, Zhao, C, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006 Nov 10;314(5801):989–92.
76.Sham, PC, Purcell, SM. Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics. 2014 May;15(5):335–46.
77.Raychaudhuri, S. Mapping rare and common causal alleles for complex human diseases. Cell. 2011 Sep 30;147(1):5769.
78.McCarthy, MI, Abecasis, GR, Cardon, LR, Goldstein, DB, Little, J, Ioannidis, JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics. 2008 May;9(5):356–69.
79.Bettens, K, Sleegers, K, Van Broeckhoven, C. Genetic insights in Alzheimer’s disease. Lancet Neurology. 2013 Jan;12(1):92104.
80.Manolio, TA, Collins, FS, Cox, NJ, Goldstein, DB, Hindorff, LA, Hunter, DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009 Oct 8;461(7265):747–53.
81.Ridge, PG, Mukherjee, S, Crane, PK, Kauwe, JS; Alzheimer’s Disease Genetics Consortium. Alzheimer’s disease: analyzing the missing heritability. PloS One. 2013;8(11):e79771.
82.Wang, L, Jia, P, Wolfinger, RD, Chen, X, Zhao, Z. Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics. 2011 Jul;98(1):18.
83.Hollingworth, P, Sweet, R, Sims, R, Harold, D, Russo, G, Abraham, R, et al. Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Molecular Psychiatry. 2012 Dec;17(12):1316–27.
84.Martinelli-Boneschi, F, Giacalone, G, Magnani, G, Biella, G, Coppi, E, Santangelo, R, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiology of Aging. 2013 Jun;34(6):1711 e7–13.
85.Do, R, Kathiresan, S, Abecasis, GR. Exome sequencing and complex disease: practical aspects of rare variant association studies. Human Molecular Genetics. 2012 Oct 15;21(R1):R1–9.
86.Tanzi, RE. The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine. 2012 Oct;2(10):a006296.
87.Bertram, L, McQueen, MB, Mullin, K, Blacker, D, Tanzi, RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genetics. 2007 Jan;39(1):1723.
88.Lambert, JC, Ibrahim-Verbaas, CA, Harold, D, Naj, AC, Sims, R, Bellenguez, C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics. 2013 Dec;45(12):1452–8.
89.Escott-Price, V, Bellenguez, C, Wang, LS, Choi, SH, Harold, D, Jones, L, et al. Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PloS One. 2014;9(6):e94661.
90.Miyashita, A, Koike, A, Jun, G, Wang, LS, Takahashi, S, Matsubara, E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PloS One. 2013;8(4):e58618.
91.Cruchaga, C, Kauwe, JS, Harari, O, Jin, SC, Cai, Y, Karch, CM, et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron. 2013 Apr 24;78(2):256–68.
92.Morey, M, Fernandez-Marmiesse, A, Castineiras, D, Fraga, JM, Couce, ML, Cocho, JA. A glimpse into past, present, and future DNA sequencing. Molecular Genetics and Metabolism. 2013 Sep-Oct;110(1–2):324.
93.Wetterstrand, KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP) [cited 2014 02–09–2014].
94.Liu, L, Li, Y, Li, S, Hu, N, He, Y, Pong, R, et al. Comparison of next-generation sequencing systems. Journal of Biomedicine & Biotechnology. 2012;2012:251364.
95.Bamshad, MJ, Ng, SB, Bigham, AW, Tabor, HK, Emond, MJ, Nickerson, DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics. 2011 Nov;12(11):745–55.
96.Keogh, MJ, Chinnery, PF. Next-generation sequencing for neurological diseases: new hope or new hype? Clinical Neurology and Neurosurgery. 2013 Jul;115(7):948–53.
97.MacArthur, DG, Manolio, TA, Dimmock, DP, Rehm, HL, Shendure, J, Abecasis, GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014 Apr 24;508(7497):469–76.
98.Kilpinen, H, Barrett, JC. How next-generation sequencing is transforming complex disease genetics. Trends in Genetics: TIG. 2013 Jan;29(1):2330.
99.Yang, Y, Muzny, DM, Reid, JG, Bainbridge, MN, Willis, A, Ward, PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. The New England Journal of Medicine. 2013 Oct 17;369(16):1502–11.
100.Ng, SB, Buckingham, KJ, Lee, C, Bigham, AW, Tabor, HK, Dent, KM, et al. Exome sequencing identifies the cause of a Mendelian disorder. Nature Genetics. 2010 Jan;42(1):30–5.
101.Beck, J, Pittman, A, Adamson, G, Campbell, T, Kenny, J, Houlden, H, et al. Validation of next-generation sequencing technologies in genetic diagnosis of dementia. Neurobiology of Aging. 2014 Jan;35(1):261–5.
102.Zimprich, A, Benet-Pages, A, Struhal, W, Graf, E, Eck, SH, Offman, MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. American Journal of Human Genetics. 2011 Jul 15;89(1):168–75.
103.Guerreiro, R, Bras, J, Wojtas, A, Rademakers, R, Hardy, J, Graff-Radford, N. A nonsense mutation in PRNP associated with clinical Alzheimer’s disease. Neurobiology of Aging. 2014 May 27;35(11):e13–2656, e16.
104.Carney, RM, Kohli, MA, Kunkle, BW, Naj, AC, Gilbert, JR, Zuchner, S, et al. Parkinsonism and distinct dementia patterns in a family with the MAPT R406W mutation. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2014 May;10(3):360–5.
105.Guerreiro, R, Bilgic, B, Guven, G, Bras, J, Rohrer, J, Lohmann, E, et al. Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiology of Aging. 2013 Dec;34(12):2890 e1–5.
106.Sharma, M, Kruger, R, Gasser, T. From genome-wide association studies to next-generation sequencing: lessons from the past and planning for the future. JAMA Neurology. 2014 Jan;71(1):56.
107.Liu, YW, He, YH, Zhang, YX, Cai, WW, Yang, LQ, Xu, LY, et al. Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals. Neurobiology of Aging. 2014 Apr;35(4):935 e11–2.
108.Bamne, MN, Demirci, FY, Berman, S, Snitz, BE, Rosenthal, SL, Wang, X, et al. Investigation of an amyloid precursor protein protective mutation (A673T) in a North American case-control sample of late-onset Alzheimer’s disease. Neurobiology of Aging. 2014 Jul;35(7):1779 e15–6.
109.Jonsson, T, Stefansson, H, Steinberg, S, Jonsdottir, I, Jonsson, PV, Snaedal, J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. The New England Journal of Medicine. 2013 Jan 10;368(2):107–16.
110.Guerreiro, R, Wojtas, A, Bras, J, Carrasquillo, M, Rogaeva, E, Majounie, E, et al. TREM2 variants in Alzheimer’s disease. The New England Journal of Medicine. 2013 Jan 10;368(2):117–27.
111.Guerreiro, R, Hardy, J. TREM2 and neurodegenerative disease. The New England Journal of Medicine. 2013 Oct 17;369(16):1569–70.
112.Cruchaga, C, Karch, CM, Jin, SC, Benitez, BA, Cai, Y, Guerreiro, R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014 Jan 23;505(7484):550–4.
113.Benitez, BA, Jin, SC, Guerreiro, R, Graham, R, Lord, J, Harold, D, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiology of Aging. 2014 Jun;35(6):1510 e19–26.
114.MacArthur, DG, Balasubramanian, S, Frankish, A, Huang, N, Morris, J, Walter, K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012 Feb 17;335(6070):823–8.
115.Green, RC, Berg, JS, Grody, WW, Kalia, SS, Korf, BR, Martin, CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine: Official Journal of the American College of Medical Genetics. 2013 Jul;15(7):565–74.
116.Nakamura, K, Jeong, SY, Uchihara, T, Anno, M, Nagashima, K, Nagashima, T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics. 2001 Jul 1;10(14):1441–8.
117.Ling, SC, Polymenidou, M, Cleveland, DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013 Aug 7;79(3):416–38.
118.Klein, CJ, Bird, T, Ertekin-Taner, N, Lincoln, S, Hjorth, R, Wu, Y, et al. DNMT1 mutation hot spot causes varied phenotypes of HSAN1 with dementia and hearing loss. Neurology. 2013 Feb 26;80(9):824–8.
119.Stranger, BE, Forrest, MS, Clark, AG, Minichiello, MJ, Deutsch, S, Lyle, R, et al. Genome-wide associations of gene expression variation in humans. PLoS Genetics. 2005 Dec;1(6):e78.
120.Allen, M, Zou, F, Chai, HS, Younkin, CS, Crook, J, Pankratz, VS, et al. Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012 Jul 17;79(3):221–8.
121.Veerappan, CS, Sleiman, S, Coppola, G. Epigenetics of Alzheimer’s disease and frontotemporal dementia. Neurotherapeutics: The Journal of the American Society for Experimental Neurotherapeutics. 2013 Oct;10(4):709–21.
122.Bennett, DA, Yu, L, Yang, J, Srivastava, GP, Aubin, C, De Jager, PL. Epigenomics of Alzheimer’s disease. Translational Research: The Journal of Laboratory and Clinical Medicine. 2015 Jan;165(1):200–20.
123.Mastroeni, D, McKee, A, Grover, A, Rogers, J, Coleman, PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PloS One. 2009;4(8):e6617.
124.Gijselinck, I, Van Langenhove, T, van der Zee, J, Sleegers, K, Philtjens, S, Kleinberger, G, et al. A C9ORF72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology. 2012 Jan;11(1):5465.
125.Campion, D, Dumanchin, C, Hannequin, D, Dubois, B, Belliard, S, Puel, M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. American Journal of Human Genetics. 1999 Sep;65(3):664–70.
126.Mackay, TF. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nature Reviews Genetics. 2014 Jan;15(1):2233.
127.Loomis, EW, Eid, JS, Peluso, P, Yin, J, Hickey, L, Rank, D, et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Research. 2013 Jan;23(1):121–8.
128.Maurano, MT, Humbert, R, Rynes, E, Thurman, RE, Haugen, E, Wang, H, et al. Science. 2012 Sep 7;337(6099):1190–5.