Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T15:15:31.632Z Has data issue: false hasContentIssue false

Chapter 8 - Alzheimer’s disease

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morris, J. Clinical presentation and course of Alzheimer disease. In Terry, R, Katzman, R, Bick, K, Sisodia, S (eds.) Alzheimer Disease. Philadelphia, PA: Lippincott Williams & Wilkins; 1999: pp.1124.Google Scholar
Moller, HJ, Graeber, MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci 1998;248(3):111–22.Google ScholarPubMed
Ferri, CP, Prince, M, Brayne, C et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005;366(9503):2112–17.CrossRefGoogle ScholarPubMed
Prince, M, Prina, M, Guerchet, M. World Alzheimer report 2013: Journey of caring – An analysis of long-term care for dementia Sep 2013. (http://www.alz.co.uk/research/WorldAlzheimerReport2013.pdf)Google Scholar
Alzheimer’s Association. 2013 Alzheimer’s Association Facts & Figures. Alzheimer’s & Dementia 2013;9(2):171.Google Scholar
Herbert, LE, Weuve, J, Scherr, PA, Evans, DA. Alzheimer’s disease in the USA (2010–2050) estimated using the 2010 census. Neurology 2013; 80(19):1778–83.Google Scholar
Kukull, WA, Ganguli, M. Epidemiology of dementia: concepts and overview. Neurol Clin 2000;18(4):923–50.CrossRefGoogle ScholarPubMed
Bachman, DL, Wolf, PA, Linn, R et al. Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 1992;42(1):115–19.CrossRefGoogle ScholarPubMed
Kokmen, E, Beard, CM, Offord, KP, Kurland, LT. Prevalence of medically diagnosed dementia in a defined USA population: Rochester, Minnesota, January 1, 1975. Neurology 1989;39(6):773–6.CrossRefGoogle Scholar
Miech, RA, Breitner, JC, Zandi, PP et al. Incidence of AD may decline in the early 90s for men, later for women: the Cache County study. Neurology 2002;58(2):209–18.CrossRefGoogle ScholarPubMed
Ruitenberg, A, Ott, A, van Swieten, JC, Hofman, A, Breteler, MM. Incidence of dementia: does gender make a difference? Neurobiol Aging 2001;22(4):575–80.CrossRefGoogle Scholar
Dilworth-Anderson, P, Hendrie, HC, Manly, JJ, Khachaturian, AS, Fazio, S. Diagnosis and assessment of Alzheimer’s disease in diverse populations. Alzheimers Dement 2008;4(4):305–9.CrossRefGoogle ScholarPubMed
Chin, AL, Negash, S, Hamilton, R. Diversity and disparity in dementia: The impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis Assoc Disord 2011;25(3):187–95.CrossRefGoogle ScholarPubMed
Ganguli, M, Dodge, HH, Shen, C, Pandav, RS, DeKosky, ST. Alzheimer disease and mortality: A 15-year epidemiological study. Arch Neurol 2005;62(5):779–84.CrossRefGoogle ScholarPubMed
Helzner, EP, Scarmeas, N, Consentino, S, Tang, MX, Schupf, N, Stern, Y. Survival in Alzheimer disease: A multiethnic, population-based study of incident cases. Neurology 2008;71(19):1489–95.CrossRefGoogle ScholarPubMed
Waring, SC, Doody, RS, Pavlik, VN, Massman, PJ, Chan, W. Survival among patients with dementia from a large multi-ethnic population. Alzheimer Dis Assoc Disord 2005;19(4):178–83.CrossRefGoogle ScholarPubMed
Borenstein, AR, Copenhaver, CI, Mortimer, JA. Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord 2006;20(1):6372.CrossRefGoogle ScholarPubMed
Mayeux, R, Ottman, R, Maestre, G et al. Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 1995;45(Pt 1):555–7.CrossRefGoogle ScholarPubMed
Guskiewicz, KM. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 2005;57:719–26.CrossRefGoogle ScholarPubMed
Plassman, BL, Havlik, RJ, Steffens, DC et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 2000;55(8):1158–66.CrossRefGoogle ScholarPubMed
Guo, Z, Cupples, LA, Kurz, A et al. Head injury and the risk of AD in the MIRAGE study. Neurology 2000;54(6):1316–23.CrossRefGoogle ScholarPubMed
Whitmer, RA, Gustafson, DR, Barrett-Conner, E, Haan, M, Gunderson, EP, Yaffe, K. Central obesity and increased risk of dementia more than three decades later. Neurology 2008;71:1057–64.CrossRefGoogle ScholarPubMed
Craft, S. Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 2006;20(4):298301.CrossRefGoogle ScholarPubMed
Profenno, LA, Porsteinsson, AP, Faraone, SV. Meta-analysis of Alzhimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry 2010;67:505–12.CrossRefGoogle Scholar
Debette, S, Seshadri, S, Beiser, A et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 2011;77(5): 461–68.CrossRefGoogle ScholarPubMed
Solomon, A, Kivipelto, M, Wolozin, B, Zhou, J, Whitmer, RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement and Geriatr Disord 2009;28:7580.CrossRefGoogle ScholarPubMed
Rusanen, M, Kivipelto, M, Quesenberry, CP, Zhou, J, Whitmer, RA. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 2010;171(4):333–9.Google ScholarPubMed
Wolf, H, Julin, P, Gertz, HJ, Winblad, B, Wahlund, LO. Intracranial volume in mild cognitive impairment, Alzheimer’s disease and vascular dementia: evidence for brain reserve? Int J Geriatr Psychiatry 2004;19(10):9951007.CrossRefGoogle ScholarPubMed
Beeri, MS, Davidson, M, Silverman, JM et al. Relationship between body height and dementia. Am J Geriatr Psychiatry 2005;13(2):116–23.CrossRefGoogle ScholarPubMed
Abbott, RD, White, LR, Ross, GW et al. Height as a marker of childhood development and late-life cognitive function: the Honolulu-Asia Aging Study. Pediatrics 1998;102(Pt 1):602–9.CrossRefGoogle ScholarPubMed
Wilson, RS, Scherr, PA, Bienias, JL et al. Socioeconomic characteristics of the community in childhood and cognition in old age. Exp Aging Res 2005;31(4):393407.CrossRefGoogle ScholarPubMed
Hall, KS, Gao, S, Unverzagt, FW, Hendrie, HC. Low education and childhood rural residence: risk for Alzheimer’s disease in African Americans. Neurology 2000;54(1):95–9.CrossRefGoogle ScholarPubMed
Moceri, VM, Kukull, WA, Emanuel, I, van Belle, G, Larson, EB. Early-life risk factors and the development of Alzheimer’s disease. Neurology 2000;54(2):415–20.CrossRefGoogle ScholarPubMed
Wilson, RS, Scherr, PA, Hoganson, G et al. Early life socioeconomic status and late life risk of Alzheimer’s disease. Neuroepidemiology 2005;25(1):814.CrossRefGoogle ScholarPubMed
Kaplan, GA, Turrell, G, Lynch, JW et al. Childhood socioeconomic position and cognitive function in adulthood. Int J Epidemiol 2001;30(2):256–63.CrossRefGoogle ScholarPubMed
Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012;11(11):1006–12.CrossRefGoogle ScholarPubMed
Qiu, C, Backman, L, Winblad, B, Aguero-Torres, H, Fratiglioni, L. The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project. Arch Neurol 2001;58(12):2034–9.CrossRefGoogle ScholarPubMed
Roe, C, Xiong, C, Miller, J, Morris, J. Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology 2007;68(3):223–8.CrossRefGoogle ScholarPubMed
Kittner, SJ, White, LR, Farmer, ME et al. Methodological issues in screening for dementia: the problem of education adjustment. J Chronic Dis 1986;39(3): 163–70.CrossRefGoogle ScholarPubMed
Zhang, MY, Katzman, R, Salmon, D et al. The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol 1990;27(4):428–37.CrossRefGoogle ScholarPubMed
Stern, Y, Gurland, B, Tatemichi, TK et al. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA 1994;271(13):1004–10.CrossRefGoogle ScholarPubMed
Karp, A, Kareholt, I, Qiu, C et al. Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am J Epidemiol 2004; 159(2):175–83.CrossRefGoogle ScholarPubMed
Stern, Y, Albert, S, Tang, MX, Tsai, WY. Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 1999;53(9):1942–7.CrossRefGoogle ScholarPubMed
Stern, Y, Habeck, C, Moeller, J et al. Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex 2005;15(4):394402.CrossRefGoogle ScholarPubMed
Plassman, BL, Welsh, KA, Helms, M et al. Intelligence and education as predictors of cognitive state in late life: a 50-year follow-up. Neurology 1995;45(8):1446–50.CrossRefGoogle Scholar
Luchsinger, JA, Mayeux, R. Dietary factors and Alzheimer’s disease. Lancet Neurol 2004;3(10):579–87.CrossRefGoogle ScholarPubMed
Hooshmand, B, Solomon, A, Kareholt, I, Leiviska, J, et al. Homocysteine and holotranscobalamin and the risk of Alzheimer disease: A longitudinal study. Neurology 2010; 75(16):1408–14.CrossRefGoogle ScholarPubMed
Deng, J, Zhou, DH, Li, J et al. A 2-year follow-up study of alcohol consumption and risk of dementia. Clin Neurol Neurosurg 2006;108(4):378–83.CrossRefGoogle ScholarPubMed
Mukamal, KJ, Kuller, LH, Fitzpatrick, AL et al. Prospective study of alcohol consumption and risk of dementia in older adults. JAMA 2003;289(11):1405–13.CrossRefGoogle ScholarPubMed
Laitinen, MH, Ngandu, T, Rovio, S et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord 2006;22(1):99107.CrossRefGoogle ScholarPubMed
Morris, MC, Evans, DA, Bienias, JL et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol 2003;60(2):194200.CrossRefGoogle ScholarPubMed
Morris, MC, Evans, DA, Bienias, JL et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003;60(7):940–6.Google ScholarPubMed
Willis, BL, Gao, A, Leonard, D, DeFina, LF, Berry, JD. Midlife fitness and the development of chronic conditions later in life. Arch Intern Med 2012;172(17):1333–40.CrossRefGoogle Scholar
Larson, EB, Wang, L, Bowen, JD et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 2006;144(2):7381.CrossRefGoogle ScholarPubMed
Fratiglioni, L, Paillard-Borg, S, Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 2004;3(6):343–53.CrossRefGoogle ScholarPubMed
Wilson, RS, Bennett, DA, Bienias, JL et al. Cognitive activity and incident AD in a population-based sample of older persons. Neurology 2002;59(12):1910–14.CrossRefGoogle Scholar
Reed, BR, Dowling, M, Farias, ST et al. Cognitive activities during adulthood are more important than education in building reserve. J Int Neuropsychol Soc 2011;17:615–24.CrossRefGoogle ScholarPubMed
Bertram, L, Tanzi, RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005;115(6):1449–57.CrossRefGoogle ScholarPubMed
Cruts, M, Theuns, J, Van Broeckhoven, C. Locus-specific mutation databases for neurodegenerative brain diseases. Human Mutation 2012;33:1340–4.CrossRefGoogle ScholarPubMed
Goate, A, Chartier-Harlin, MC, Mullan, M et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991;349(6311):704–6.CrossRefGoogle ScholarPubMed
Sherrington, R, Rogaev, EI, Liang, Y et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995;375(6534):754–60.CrossRefGoogle ScholarPubMed
Levy-Lahad, E, Wasco, W, Poorkaj, P et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995;269(5226):973–7.Google ScholarPubMed
Rogaeva, EA, Fafel, KC, Song, YQ et al. Screening for PS1 mutations in a referral-based series of AD cases: 21 novel mutations. Neurology 2001;57(4):621–5.CrossRefGoogle Scholar
Wisniewski, K, Wisniewski, H, Wen, G. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 1985;17:278–82.CrossRefGoogle ScholarPubMed
Evenhuis, HM. The natural history of dementia in Down’s syndrome. Arch Neurol 1990;47(3):263–7.CrossRefGoogle ScholarPubMed
Schupf, N, Kapell, D, Nightingale, B et al. Specificity of the fivefold increase in AD in mothers of adults with Down syndrome. Neurology 2001;57(6):979–84.CrossRefGoogle ScholarPubMed
Corder, EH, Saunders, AM, Strittmatter, WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late-onset families. Science 1993;261(5123):921–3.CrossRefGoogle ScholarPubMed
Poirier, J, Davignon, J, Bouthillier, D et al. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 1993;342(8873):697–9.CrossRefGoogle ScholarPubMed
Slooter, AJ, Cruts, M, Kalmijn, S et al. Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: the Rotterdam Study. Arch Neurol 1998;55(7):964–8.CrossRefGoogle ScholarPubMed
Farrer, LA, Cupples, LA, Haines, JL et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997;278(16): 1349–56.CrossRefGoogle ScholarPubMed
Meyer, MR, Tschanz, JT, Norton, MC et al. APOE genotype predicts when – not whether – one is predisposed to develop Alzheimer disease. Nat Genet 1998;19(4):321–2.CrossRefGoogle Scholar
Rogaeva, E, Meng, Y, Lee, JH et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007;39(2):168–77.CrossRefGoogle ScholarPubMed
Lambert, JC, Ibrahim-Verbaas, CA, Harold, D, Naj, AC, et al. Meta-analysis of 74,046 individuals identifies 11 new siscepibility loci for Alzheimer’s disease. Nat Genet 2013;45(12):1452–58.CrossRefGoogle ScholarPubMed
Reitz, C, Jun, G, Naj, A, Rajbhandary, R, et al. Variants in the ATP-binding cassette transporter (ABCA7), Apolipoprotein E E4, and the trisk of late-onset Alzheimer disease in African Americans. JAMA 2013;309(14):1483–92.CrossRefGoogle Scholar
Scheff, SW, Neltner, JH, Nelson, PT. Is synaptic loss a unique hallmark of Alzheimer’s disease? Biochem Pharmacol 2014;88(4):517–28.CrossRefGoogle Scholar
Graeber, MB, Mehraein, P. Reanalysis of the first case of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 1999;249(Suppl 3):1013.CrossRefGoogle ScholarPubMed
Haass, C, Schlossmacher, MG, Hung, AY et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 1992;359(6393):322–5.CrossRefGoogle ScholarPubMed
Blessed, G, Tomlinson, B, Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 1968;114:797811.CrossRefGoogle ScholarPubMed
Bayer, TA, Wirths, O, Majtenyi, K et al. Key factors in Alzheimer’s disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol 2001;11(1):111.CrossRefGoogle ScholarPubMed
Hardy, J, Selkoe, DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353–6.CrossRefGoogle ScholarPubMed
Walsh, DM, Selkoe, DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004;44(1):181–93.CrossRefGoogle ScholarPubMed
Iqbal, K, Alonso Adel, C, Chen, S et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 2005;1739(2–3):198210.CrossRefGoogle ScholarPubMed
Braak, E, Griffing, K, Arai, K et al. Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer. Eur Arch Psychiatry Clin Neurosci 1999;249(Suppl 3): 1422.CrossRefGoogle Scholar
Blennow, K, de Leon, MJ, Zetterberg, H. Alzheimer’s disease. Lancet 2006;368(9533):387403.CrossRefGoogle ScholarPubMed
Hyman, BT, van Hoesen, GW, Damasio, AR, Barnes, CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984;225(4667):1168–70.CrossRefGoogle ScholarPubMed
Fuller, G, Goodman, J. Neurodegenerative disorders. Practical Review of Neuropathology. Philadelphia, PA: Lippincott, Williams & Wilkins; 2001: pp.257–64.Google Scholar
Mesulam, M, Shaw, P, Mash, D, Weintraub, S. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 2004;55(6):815–28.CrossRefGoogle ScholarPubMed
Storga, D, Vrecko, K, Birkmayer, JG, Reibnegger, G. Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci Lett 1996;203(1):2932.CrossRefGoogle ScholarPubMed
Reinikainen, KJ, Paljarvi, L, Huuskonen, M et al. A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci 1988;84(1):101–16.CrossRefGoogle ScholarPubMed
Reinikainen, KJ, Soininen, H, Riekkinen, PJ. Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res 1990;27(4):576–86.CrossRefGoogle ScholarPubMed
Keller, JN. Age-related neuropathology, cognitive decline, and Alzheimer’s disease. Ageing Res Rev 2006;5(1):113.CrossRefGoogle ScholarPubMed
Khachaturian, ZS. Diagnosis of Alzheimer’s disease. Arch Neurol 1985;42(11):1097–105.CrossRefGoogle ScholarPubMed
Mirra, SS, Heyman, A, McKeel, D et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991;41(4):479–86.CrossRefGoogle Scholar
Braak, H, Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82(4):239–59.CrossRefGoogle ScholarPubMed
The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 1997;18(4 Suppl):S1–2.CrossRefGoogle Scholar
Hyman, BT, Phelps, CH, Beach, TG et al. National Institute on Aging-Alzhimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012;8(1):113.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Hillis, AE, Weintraub, S et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.CrossRefGoogle ScholarPubMed
McMonagle, P, Deering, F, Berliner, Y, Kertesz, A. The cognitive profile of posterior cortical atrophy. Neurology 2006;66(3):331–8.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Lopez, O, Jones, B et al. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA 2002;288(12):1475–83.CrossRefGoogle ScholarPubMed
Cummings, JL. Alzheimer’s disease. N Engl J Med 2004;351(1):5667.CrossRefGoogle ScholarPubMed
Ortiz, F, Fitten, LJ, Cummings, JL, Hwang, S, Fonseca, M. Neuropsychiatric and behavioral symptoms in a community sample of Hispanics with Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2006;21(4):263–73.CrossRefGoogle Scholar
Chow, TW, Liu, CK, Fuh, JL et al. Neuropsychiatric symptoms of Alzheimer’s disease differ in Chinese and American patients. Int J Geriatr Psychiatry 2002; 17(1):22–8.CrossRefGoogle ScholarPubMed
Cummings, JL, Mega, M, Gray, K et al. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44(12):2308–14.CrossRefGoogle ScholarPubMed
Tang-Wai, DF, Graff-Radford, NR, Boeve, BF et al. Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 2004;63(7):1168–74.CrossRefGoogle ScholarPubMed
Boeve, BF, Maraganore, DM, Parisi, JE et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 1999;53(4):795800.CrossRefGoogle ScholarPubMed
Caselli, RJ, Stelmach, GE, Caviness, JN et al. A kinematic study of progressive apraxia with and without dementia. Mov Disord 1999;14(2):276–87.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Johnson, JK, Head, E, Kim, R, Starr, A, Cotman, CW. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol 1999;56(10):1233–9.CrossRefGoogle ScholarPubMed
Kramer, JH, Miller, BL. Alzheimer’s disease and its focal variants. Semin Neurol 2000;20(4):447–54.CrossRefGoogle ScholarPubMed
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th Edition. Arlington, VA: American Psychiatric Publishing; 2013.Google Scholar
McKhann, GM, Knopman, DS, Chertkow, H et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institutes on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):263–9.CrossRefGoogle ScholarPubMed
McKhann, G, Drachman, D, Folstein, M et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34(7):939–44.CrossRefGoogle ScholarPubMed
Sperling, RA, Aisen, PS, Beckett, LA, Bennett, DA, Craft, S, Fagan, AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Instituteson Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):280–92.CrossRefGoogle Scholar
Albert, MS, DeKosky, ST, Dickson, D et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institutes on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):270–9.CrossRefGoogle ScholarPubMed
Barker, WW, Luis, CA, Kashuba, A et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 2002;16(4):203–12.CrossRefGoogle ScholarPubMed
Caviness, JN. Myoclonus and neurodegenerative disease: what’s in a name? Parkinsonism Relat Disord 2003;9(4):185–92.CrossRefGoogle Scholar
Attems, J, Konig, C, Huber, M, Lintner, F, Jellinger, KA. Cause of death in demented and non-demented elderly inpatients; an autopsy study of 308 cases. J Alzheimer’s Dis 2005;8(1):5762.CrossRefGoogle ScholarPubMed
Mungas, D, Marshall, SC, Weldon, M, Haan, M, Reed, BR. Age and education correction of Mini-Mental State Examination for English and Spanish-speaking elderly. Neurology 1996;46(3):700–6.CrossRefGoogle ScholarPubMed
Braaten, AJ, Parsons, TD, McCue, R, Sellers, A, Burns, WJ. Neurocognitive differential diagnosis of dementing diseases: Alzheimer’s dementia, vascular dementia, frontotemporal dementia, and major depressive disorder. Int J Neurosci 2006;116(11):1271–93.CrossRefGoogle ScholarPubMed
Crowell, TA, Luis, CA, Cox, DE, Mullan, M. Neuropsychological comparison of Alzheimer’s disease and dementia with Lewy bodies. Dement Geriatr Cogn Disord 2007;23(2):120–5.CrossRefGoogle ScholarPubMed
Diehl, J, Monsch, AU, Aebi, C et al. Frontotemporal dementia, semantic dementia, and Alzheimer’s disease: the contribution of standard neuropsychological tests to differential diagnosis. J Geriatr Psychiatry Neurol 2005;18(1):3944.CrossRefGoogle ScholarPubMed
Rascovsky, K, Salmon, DP, Hansen, LA, Thal, LJ, Galasko, D. Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer’s disease. Neuropsychology 2007;21(1):2030.CrossRefGoogle ScholarPubMed
Morris, JC, Heyman, A, Mohs, RC et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989;39(9):1159–65.Google Scholar
Katzman, R, Brown, T, Fuld, P et al. Validation of a short Orientation–Memory–Concentration Test of cognitive impairment. Am J Psychiatry 1983;140(6):734–9.Google Scholar
Kaplan, E, Goodglass, H, Weintraub, S. The Boston Naming Test. Boston, MA: Veterans Administration Medical Center; 1978.Google Scholar
Berg, L. Clinical Dementia Rating (CDR). Psychopharmacol Bull 1988;24(4):637–9.Google ScholarPubMed
Morris, JC, Weintraub, S, Chui, HC et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord 2006;20(4):210–16.CrossRefGoogle ScholarPubMed
Kaufer, DI, Cummings, JL, Ketchel, P et al. Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci 2000;12(2):233–9.CrossRefGoogle ScholarPubMed
Pfeffer, RI, Kurosaki, TT, Harrah, CH Jr., Chance, JM, Filos, S. Measurement of functional activities in older adults in the community. J Gerontol 1982;37(3):323–9.CrossRefGoogle ScholarPubMed
Sheikh, J, Yesavage, J. Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. In Brink, T (ed.) Clinical Gerontology: A Guide to Assessment and Intervention. New York: Haworth Press; 1986: pp.165–73.Google Scholar
Weintraub, S, Salmon, D, Mercaldo, N et al. The Alzheimer’s Disease Center’s Uniform Data Set (UDS): The neuropsychological test battery. Alzheimer Dis Assoc Disord 2009;23(2):91101.CrossRefGoogle Scholar
Hayden, KM, Jones, RN, Zimmer, C et al. Factor structure of the National Alzheimer’s Coordinating Centers Uniform Dataset Neuropsychological Battery: An evaluation of invariance between and within groups over time. Alzheimer Dis Assoc Disord 2011;25(2):128137.CrossRefGoogle ScholarPubMed
Weintraub, S, Dikmen, SS, Heaton, RK et al. Cognition assessment using the NIH Toolbox. Neurology 2013;80(Suppl 3):S54–64.CrossRefGoogle ScholarPubMed
Knopman, DS, DeKosky, ST, Cummings, JL et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56(9):1143–53.CrossRefGoogle Scholar
American Academy of Neurology. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter for diagnosis and evaluation of dementia. [Summary statement.] Neurology 1994;44(11):2203–6.Google Scholar
Mendez, MF, Catanzaro, P, Doss, RC et al. Seizures in Alzheimer’s disease: clinicopathologic study. J Geriatr Psychiatry Neurol 1994;7(4):230–3.CrossRefGoogle ScholarPubMed
Lozsadi, DA, Larner, AJ. Prevalence and causes of seizures at the time of diagnosis of probable Alzheimer’s disease. Dement Geriatr Cogn Disord 2006;22(2):121–4.CrossRefGoogle ScholarPubMed
Hulstaert, F, Blennow, K, Ivanoiu, A et al. Improved discrimination of AD patients using beta-amyloid (1–42) and tau levels in CSF. Neurology 1999;52(8):1555–62.CrossRefGoogle ScholarPubMed
Shoji, M, Matsubara, E, Kanai, M et al. Combination assay of CSF tau, A beta 1–40 and A beta 1–42(43) as a biochemical marker of Alzheimer’s disease. J Neurol Sci 1998;158(2):134–40.CrossRefGoogle Scholar
Gomez-Tortosa, E, Gonzalo, I, Fanjul, S et al. Cerebrospinal fluid markers in dementia with Lewy bodies compared with Alzheimer disease. Arch Neurol 2003;60(9):1218–22.CrossRefGoogle ScholarPubMed
Sunderland, T, Linker, G, Mirza, N et al. Decreased beta-amyloid 1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 2003;289(16):2094–103.CrossRefGoogle ScholarPubMed
Hampel, H, Buerger, K, Zinkowski, R et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry 2004;61(1):95102.CrossRefGoogle ScholarPubMed
Jack, CR, Vemuri, P, Wiste, HJ, Weigand, SD, et al. Evidence for ordering of Alzheimer’s disease biomarkers. Arch Neurol 2011;68(12):1526–35.CrossRefGoogle Scholar
Buchhave, P, Minthon, L, Zetterberg, H, Wallin, A, et al. Cerebrospinal fluid levels of B-amyloid 1-42, but not tau, are fully changed already 5 to 10 years before onset of Alzheimer dementia. Arch Gen Psychiatry 2012;69(1):98106.CrossRefGoogle Scholar
Zakzanis, KK, Graham, SJ, Campbell, Z. A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol Rev 2003;13(1):118.CrossRefGoogle ScholarPubMed
Yavuz, BB, Ariogul, S, Cankurtaran, M et al. Hippocampal atrophy correlates with the severity of cognitive decline. Int Psychogeriatr 2006:19:767–77.Google ScholarPubMed
Laakso, MP, Partanen, K, Riekkinen, P et al. Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology 1996;46(3):678–81.CrossRefGoogle ScholarPubMed
Frisoni, GB, Laakso, MP, Beltramello, A et al. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 1999;52(1):91100.CrossRefGoogle ScholarPubMed
Nagy, Z, Hindley, NJ, Braak, H et al. Relationship between clinical and radiological diagnostic criteria for Alzheimer’s disease and the extent of neuropathology as reflected by “stages”: a prospective study. Dement Geriatr Cogn Disord 1999;10(2):109–14.CrossRefGoogle ScholarPubMed
van de Pol, LA, Hensel, A, Barkhof, F et al. Hippocampal atrophy in Alzheimer disease: age matters. Neurology 2006;66(2):236–8.CrossRefGoogle ScholarPubMed
Whitwell, JL, Shiung, MM, Przybelski, SA et al. MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 2008;70(7):512–20.CrossRefGoogle ScholarPubMed
deToledo-Morrell, L, Stoub, TR, Bulgakova, M et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004;25(9):1197–203.CrossRefGoogle ScholarPubMed
Celone, KA, Calhoun, VD, Dickerson, BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 2006;26(40):10222–31.CrossRefGoogle ScholarPubMed
Grecius, MD, Srivastava, G, Reiss, AL, Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 2004;101(13):4637–42.Google Scholar
Buckner, RL, Snyder, AZ, Shannon, BJ et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005;25(34):7709–17.CrossRefGoogle ScholarPubMed
Herholz, K, Salmon, E, Perani, D et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17(1):302–16.CrossRefGoogle ScholarPubMed
Hoffman, JM, Welsh-Bohmer, KA, Hanson, M et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000;41(11):1920–8.Google ScholarPubMed
Chetelat, G, Desgranges, B, de la Sayette, V et al. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 2003;60(8):1374–7.CrossRefGoogle ScholarPubMed
Klunk, WE, Engler, H, Nordberg, A et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55(3):306–19.CrossRefGoogle ScholarPubMed
Clark, CM, Schneider, JA, Bedell, BJ, et al. Use of florbetapir PET for imaging beta-amyloid pathology. JAMA 2011;305(3):275–83.Google ScholarPubMed
Jack, CR, Lowe, VJ, Weigand, SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 2009;132(Pt 5):1355–65.CrossRefGoogle ScholarPubMed
Engler, H, Forsberg, A, Almkvist, O et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006;129(Pt 11):2856–66.CrossRefGoogle ScholarPubMed
Small, GW, Kepe, V, Barrio, JR. Seeing is believing: neuroimaging adds to our understanding of cerebral pathology. Curr Opin Psychiatry 2006;19(6):564–9.CrossRefGoogle ScholarPubMed
Lockhart, A. Imaging Alzheimer’s disease pathology: one target, many ligands. Drug Discov Today 2006;11(23–24):1093–9.CrossRefGoogle ScholarPubMed
Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006;1: CD005593.Google Scholar
Bullock, R, Touchon, J, Bergman, H et al. Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-year period. Curr Med Res Opin 2005;21(8):1317–27.CrossRefGoogle ScholarPubMed
Bullock, R, Dengiz, A. Cognitive performance in patients with Alzheimer’s disease receiving cholinesterase inhibitors for up to 5 years. Int J Clin Pract 2005;59(7):817–22.CrossRefGoogle ScholarPubMed
Rosler, M, Anand, R, Cicin-Sain, A et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 1999;318(7184):633–8.CrossRefGoogle ScholarPubMed
Raskind, MA, Peskind, ER, Wessel, T, Yuan, W. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 2000;54(12):2261–8.CrossRefGoogle Scholar
Doody, RS, Stevens, JC, Beck, C et al. Practice parameter: management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56(9):1154–66.CrossRefGoogle Scholar
Kmietowicz, Z. NICE proposes to withdraw Alzheimer’s drugs from NHS. BMJ 2005;330(7490):495.Google ScholarPubMed
Harkany, T, Abraham, I, Timmerman, W et al. Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 2000;12(8):2735–45.CrossRefGoogle ScholarPubMed
Topper, R, Gehrmann, J, Banati, R et al. Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol (Berl) 1995;89(1):23–8.CrossRefGoogle ScholarPubMed
Couratier, P, Lesort, M, Sindou, P et al. Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity. Mol Chem Neuropathol 1996;27(3):259–73.CrossRefGoogle ScholarPubMed
Wilcock, GK. Memantine for the treatment of dementia. Lancet Neurol 2003;2(8):503–5.CrossRefGoogle ScholarPubMed
Tariot, PN, Farlow, MR, Grossberg, GT et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004;291(3):317–24.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Sheppard, JM, Steele, CD et al. Randomized, placebo-controlled, double-blind clinical trial of sertraline in the treatment of depression complicating Alzheimer’s disease: initial results from the Depression in Alzheimer’s Disease Study. Am J Psychiatry 2000;157(10):1686–9.CrossRefGoogle ScholarPubMed
Taragano, FE, Lyketsos, CG, Mangone, CA, Allegri, RF, Comesana-Diaz, E. A double-blind, randomized, fixed-dose trial of fluoxetine vs. amitriptyline in the treatment of major depression complicating Alzheimer’s disease. Psychosomatics 1997;38(3):246–52.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Jeste, DV, Chung, H et al. The expert consensus guideline series. Treatment of dementia and its behavioral disturbances. Introduction: methods, commentary, and summary. Postgrad Med 2005; (Spec No):6–22.Google Scholar
Sink, KM, Holden, KF, Yaffe, K. Pharmacological treatment of neuropsychiatric symptoms of dementia: a review of the evidence. JAMA 2005;293(5):596608.CrossRefGoogle ScholarPubMed
Schneider, LS, Tariot, PN, Dagerman, KS et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer’s disease. N Engl J Med 2006;355(15):1525–38.CrossRefGoogle ScholarPubMed
Wang, PS, Schneeweiss, S, Avorn, J et al. Risk of death in elderly users of conventional vs. atypical antipsychotic medications. N Engl J Med 2005;353(22):2335–41.CrossRefGoogle ScholarPubMed
Beier, MT. Treatment strategies for the behavioral symptoms of Alzheimer’s disease: focus on early pharmacologic intervention. Pharmacotherapy 2007;27(3):399411.CrossRefGoogle ScholarPubMed
Iverson, DJ, Gronseth, GS, Reger, MA, Classen, S. Practice parameter update: Evaluation and management of driving risk in dementia: report of the quality standards subcommittee of the American Academy of Neurology. Neurology 2010;74(16):1316–24.CrossRefGoogle Scholar
Carr, DB, Schwartzberg, JG, Manning, L, Sempek, J. The Physician’s Guide to Assessing and Counseling Older Drivers. Washington, DC: American Medical Association and National Highway Traffic Safety Administration; 2010.Google Scholar
Friedland, RP, Koss, E, Kumar, A et al. Motor vehicle crashes in dementia of the Alzheimer type. Ann Neurol 1988;24(6):782–6.CrossRefGoogle ScholarPubMed
Ott, BR, Heindel, WC, Papandonatos, GD, et al. A longitudinal study of drivers with Alzheimer's disease. Neurology 2008;70:1171–8.CrossRefGoogle Scholar
Molnar, FJ, Patel, A, Marshall, SC, Man-Son-Hing, M, Wilson, KG. Clinical utility of office-based cognitive predictors of fitness to drive in persons with dementia: a systematic review. J Am Geriatr Soc 2006;54 (12):1809–24.CrossRefGoogle ScholarPubMed
Doody, RS, Raman, R, Farlow, M, Iwatsubo, T, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New Engl J Med 2013;369(4):341–50.CrossRefGoogle ScholarPubMed
Chang, WP, Koelsch, G, Wong, S et al. In vivo inhibition of Abeta production by memapsin 2 (beta-secretase) inhibitors. J Neurochem 2004;89(6):1409–16.CrossRefGoogle ScholarPubMed
Etcheberrigaray, R, Tan, M, Dewachter, I et al. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci USA 2004;101(30):11141–6.CrossRefGoogle ScholarPubMed
Schenk, D, Hagen, M, Seubert, P. Current progress in beta-amyloid immunotherapy. Curr Opin Immunol 2004;16(5):599606.CrossRefGoogle ScholarPubMed
Weiner, HL, Frenkel, D. Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 2006;6(5):404–16.Google ScholarPubMed
Orgogozo, JM, Gilman, S, Dartigues, JF et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003;61(1):4654.CrossRefGoogle Scholar
Salloway, S, Sperling, R, Fox, NC et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New Engl J Med 2014;370(4):322–33.CrossRefGoogle ScholarPubMed
Doody, RS, Thoams, RG, Farlow, M et al. Phase 3 trails of solanezumab for mild-to-moderate Alzheimer’s disease. New Engl J Med 2014;370(4):311–21.CrossRefGoogle Scholar
Engel, T, Goni-Oliver, P, Lucas, JJ, Avila, J, Hernandez, F. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 2006;99(6):1445–55.CrossRefGoogle Scholar
Delanty, N, Vaughan, C. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1998;51(2):652.CrossRefGoogle ScholarPubMed
Szekely, CA, Thorne, JE, Zandi, PP et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 2004;23(4):159–69.CrossRefGoogle ScholarPubMed
Aisen, PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 2002;1(5):279–84.CrossRefGoogle ScholarPubMed
Green, RC, Schneider, LS, Amato, DA et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA 2009;302(23):2557–64.CrossRefGoogle ScholarPubMed
Tang, MX, Jacobs, D, Stern, Y et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996;348(9025):429–32.CrossRefGoogle ScholarPubMed
Henderson, VW, Paganini-Hill, A, Miller, BL et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000;54(2):295301.CrossRefGoogle ScholarPubMed
Engelhart, MJ, Geerlings, MI, Ruitenberg, A et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002;287(24):3223–9.CrossRefGoogle ScholarPubMed
Dysken, MW, Sano, M, Asthana, S et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014;311(1):3344.CrossRefGoogle ScholarPubMed
Lonn, E, Bosch, J, Yusuf, S et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 2005;293(11):1338–47.Google ScholarPubMed
Douaud, G, Refsum, H, de Jager, CA et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA 2013;110(23):9523–8.CrossRefGoogle ScholarPubMed
DeKosky, ST, Williamson, JD, Fitzpatrick, AL et al. Gingko biloba for prevention of dementia: A randomized controlled trial. JAMA 2008;300(19):2253–62.CrossRefGoogle ScholarPubMed
Reddy, PH, McWeeney, S. Mapping cellular transcriptosomes in autopsied Alzheimer’s disease subjects and relevant animal models. Neurobiol Aging 2006;27(8):1060–77.CrossRefGoogle ScholarPubMed
Davidsson, P, Sjogren, M. Proteome studies of CSF in AD patients. Mech Ageing Dev 2006;127(2):133–7.CrossRefGoogle ScholarPubMed
Hye, A, Lynham, S, Thambisetty, M et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 2006;129(Pt 11):3042–50.CrossRefGoogle ScholarPubMed
Mueller, SG, Weiner, MW, Thal, LJ et al. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin N Am 2005;15(4):869–77, xi–xii.CrossRefGoogle ScholarPubMed
Bradford, A, Kunik, ME, Schulz, P et al. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors. Alzheimer Dis Assoc Disord 2009;23(4):306–14.CrossRefGoogle ScholarPubMed
Sperling, R. Clinical trial of solanezumab for older individuals who may be at risk for memory loss (A4). (http://www.clinicaltrials.gov/ct2/show/NCT02008357 accessed April 1, 2014.)Google Scholar
Bateman, R. Dominantly inherited Alzheimer network trial: An opportunity to prevent dementia. a study of potential disease modifying treatments in individuals at risk for or with a type of early onset Alzheimer's disease caused by a genetic mutation (dian-tu). (http://www.clinicaltrials.gov/ct2/show/NCT01760005 accessed April 1, 2014.)Google Scholar
Sitzer, DI, Twamley, EW, Jeste, DV. Cognitive training in Alzheimer's disease: a meta-analysis of the literature. Acta Psychiatr Scand 2006;114(2):7590.CrossRefGoogle ScholarPubMed
Scarmeas, N, Luchsinger, JA, Brickman, AM et al. Physical activity and Alzheimer disease course. Am J Geriatr Psychiatry 2011;19(5):471–81.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×