Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: October 2014

8 - Motor disorders

from Section 3 - Autonomous and motor disorders

Related content

Powered by UNSILO


Abel, A., Walcott, J., Woods, J., Duda, J., and Merry, D.E. (2001) Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum Mol Genet 10: 107–116.
Adachi, H., Kume, A., Li, M., et al. (2001) Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum Mol Genet 10: 1039–1048.
Andersen, P.M. (2006) Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 6: 37–46.
Arnold, E.S., Ling, S.C., Huelga, S.C., et al. (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 110: E736–E45.
Ash, P.E., Zhang, Y.J., Roberts, C.M., et al. (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19: 3206–3218.
Audet, J.N., Gowing, G., and Julien, J.P. (2010) Wild-type human SOD1 overexpression does not accelerate motor neuron disease in mice expressing murine Sod1 G86R. Neurobiol Dis 40: 245–250.
Avila, A.M., Burnett, B.G., Taye, A.A., et al. (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117: 659–671.
Ayala, Y.M., Misteli, T., and Baralle, F.E. (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci USA 105: 3785–3789.
Banno, H., Katsuno, M., Suzuki, K., et al. (2009) Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol 65: 140–150.
Batulan, Z., Shinder, G.A., Minotti, S., et al. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 23: 5789–5798.
Baumer, D., Lee, S., Nicholson, G., et al. (2009) Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5: e1000773.
Beaulieu, J.-M., Nguyen, M.D., and Julien, J.-P. (1999) Late onset death of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 147: 531–544.
Bebee, T., Dominguez, C., and Chandler, D. (2012) Mouse models of SMA: tools for disease characterization and therapeutic development. Hum Genet 131: 1277–1293.
Bensimon, G., Lacomblez, L., and Meininger, V. (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330: 585–591.
Bingham, P.M., Scott, M.O., Wang, S., et al. (1995) Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nat Genet 9: 191–196.
Boillee, S., Yamanaka, K., Lobsiger, C.S., et al. (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312: 1389–1392.
Bowerman, M., Anderson, C.L., Beauvais, A., et al. (2009) SMN, profilin IIa and plastin 3: a link between the deregulation of actin dynamics and SMA pathogenesis. Mol Cell Neurosci 42: 66–74.
Brooks, B.P., Paulson, H.L., Merry, D.E., et al. (1997) Characterization of an expanded glutamine repeat androgen receptor in a neuronal cell culture system. Neurobiol Dis 3: 313–323.
Bruijn, L.I., Becher, M.W., Lee, M.K., et al. (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18: 327–338.
Bruijn, L.I., Houseweart, M.K., Kato, S., et al. (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281: 1851–1854.
Buratti, E. and Baralle, F.E. (2012) TDP-43: gumming up neurons through protein–protein and protein–RNA interactions. Trends Biochem Sci 37: 237–247.
Burlet, P., Huber, C., Bertrandy, S., et al. (1998) The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 7: 1927–1933.
Butchbach, M.E.R., Singh, J., Þorsteinsdóttir, M., et al. (2010) Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Hum Mol Genet 19: 454–467.
Cai, H., Lin, X., Xie, C., et al. (2005) Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress. J Neurosci 25: 7567–7574.
Cairns, N.J., Neumann, M., Bigio, E.H., et al. (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171: 227–240.
Caroni, P. (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71: 3–9.
Chang-Hong, R., Wada, M., Koyama, S., et al. (2005) Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 194: 203–211.
Chevalier-Larsen, E.S., O’Brien, C.J., Wang, H., et al (2004) Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J Neurosci 24: 4778–4786.
Chevalier-Larsen, E.S., Wallace, K.E., Pennise, C.R., and Holzbaur, E.L. (2008) Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum Mol Genet 17: 1946–1955.
Cifuentes-Diaz, C., Frugier, T., Tiziano, F.D., et al. (2001) Deletion of murine smn exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J Cell Biol 152: 1107–1114.
Cifuentes-Diaz, C., Nicole, S., Velasco, M.E., et al. (2002) Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. Hum Mol Genet 11: 1439–1447.
Clement, A.M., Nguyen, M.D., Roberts, E.A., et al. (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302: 113–117.
Da Cruz, S. and Cleveland, D.W. (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21: 904–919.
Davidson, Y., Kelley, T., Mackenzie, I.R., et al. (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113: 521–533.
Deng, H.X., Jiang, H., Fu, R., et al. (2008) Molecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach. Hum Mol Genet 17: 2310–2319.
Deng, H.X., Shi, Y., Furukawa, Y., et al. (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci USA 103: 7142–7147.
Devon, R.S., Orban, P.C., Gerrow, K., et al. (2006) Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc Natl Acad Sci USA 103: 9595–9600.
Diamond, M.I., Robinson, M.R., and Yamamoto, K.R. (2000) Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor. Proc Natl Acad Sci USA 97: 657–661.
Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T.F., and Wirth, B. (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightcycler pcr: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70: 358–368.
Fischer, U., Liu, Q., and Dreyfuss, G. (1997) The SMN–SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023–1029.
Fox-Walsh, K.L. and Hertel, K.J. (2009) Splice-site pairing is an intrinsically high fidelity process. Proc Natl Acad Sci USA 106: 1766–1771.
Frugier, T., Tiziano, F.D., Cifuentes-Diaz, C., et al (2000) Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 9: 849–858.
Gabanella, F., Butchbach, M.E.R., Saieva, L., et al. (2007) Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One 2: e921.
Gabanella, F., Carissimi, C., Usiello, A., and Pellizzoni, L. (2005) The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet 14: 3629–3642.
Gitcho, M.A., Baloh, R.H., Chakraverty, S., et al. (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63: 535–538.
Gitler, A.D. and Shorter, J. (2011) RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5: 179–187.
Gordon, D., Kidd, G.J., and Smith, R. (2008) Antisense suppression of tau in cultured rat oligodendrocytes inhibits process formation. J Neurosci Res 86: 2591–2601.
Graffmo, K.S., Forsberg, K., Bergh, J., et al. (2013) Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet 22: 51–60.
Gros-Louis, F., Gaspar, C., and Rouleau, G.A. (2006) Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 1762: 956–972.
Gros-Louis, F., Larivière, R., Gowing, G., et al. (2004) A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 279: 45951–45956.
Gurney, M.E. (1997) The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci 152: S67–S73.
Gurney, M.E., Pu, H., Chiu, A.Y., et al. (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772–1775.
Hadano, S., Benn, S.C., Kakuta, S., et al. (2006) Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Hum Mol Genet 15: 233–250.
Hanada, T., Weitzer, S., Mair, B., et al. (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495: 474–480.
Hasegawa, M., Arai, T., Nonaka, T., et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64: 60–70.
Hastings, M.L., Berniac, J., Liu, Y.H., et al. (2009) Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci Transl Med 1: 5ra12.
Heier, C.R. and DiDonato, C.J. (2009) Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet 18: 1310–1322.
Hicks, G.G., Singh, N., Nashabi, A., et al. (2000) Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 24: 175–179.
Hirano, A., Donnenfeld, H., Sasaki, S., and Nakano, I. (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43: 461–470.
Hsieh-Li, H.M., Chang, J.-G., Jong, Y.-J., et al. (2000) A mouse model for spinal muscular atrophy. Nat Genet 24: 66–70.
Igaz, L.M., Kwong, L.K., Lee, E.B., et al. (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121: 726–738.
Jaarsma, D., Haasdijk, E.D., Grashorn, J.A., et al. (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7: 623–643.
Jaarsma, D., Teuling, E., Haasdijk, E.D., De Zeeuw, C.I., and Hoogenraad, C.C. (2008) Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci 28: 2075–2088.
Jablonka, S., Schrank, B., Kralewski, M., Rossoll, W., and Sendtner, M. (2000) Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum Mol Genet 9: 341–346.
Jablonka, S., Wiese, S., and Sendtner, M. (2004) Axonal defects in mouse models of motoneuron disease. J Neurobiol 58: 272–286.
Jacquier, A., Buhler, E., Schafer, M.K., et al. (2006) Alsin/Rac1 signaling controls survival and growth of spinal motoneurons. Ann Neurol 60: 105–117.
Johansen, J.A., Yu, Z., Mo, K., et al. (2009) Recovery of function in a myogenic mouse model of spinal bulbar muscular atrophy. Neurobiol Dis 34: 113–120.
Jonsson, P.A., Ernhill, K., Andersen, P.M., et al. (2004) Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127: 73–88.
Jonsson, P.A., Graffmo, K.S., Andersen, P.M., et al. (2006) Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129: 451–464.
Joyce, P.I., Fratta, P., Fisher, E.M., and Acevedo-Arozena, A. (2011) SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 22: 420–448.
Julien, J.-P. (2001) Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell 104: 581–591.
Kabashi, E., Valdmanis, P.N., Dion, P., et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40: 572–574.
Kang, S.H., Li, Y., Fukaya, M., et al. (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16: 571–579.
Kariya, S., Park, G.-H., Maeno-Hikichi, Y., et al. (2008) Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 17: 2552–2569.
Katsuno, M., Adachi, H., Inukai, A., and Sobue, G. (2003) Transgenic mouse models of spinal and bulbar muscular atrophy (SBMA). Cytogenet Genome Res 100: 243–251.
Katsuno, M., Adachi, H., Kume, A., et al. (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35: 843–854.
Keller, B.A., Volkening, K., Droppelmann, C.A., et al. (2012) Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 124: 733–747.
Kemp, M.Q., Poort, J.L., Baqri, R.M., et al. (2011) Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action. Hum Mol Genet 20: 4475–4490.
Kikugawa, K., Nankano, R., Otaku, M., and Takashi, I. (2000) Generation of mutant SOD1-expressing mice. Prog Soc Neurol Jpn 200.
Kim, H.J., Kim, N.C., Wang, Y.D., et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467–473.
Kong, L., Wang, X., Choe, D.W., et al. (2009) Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29: 842–851.
Kraemer, B., Schuck, T., Wheeler, J., et al. (2010) Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol 119: 409–419.
Kuroda, M., Sok, J., Webb, L., et al. (2000) Male sterility and enhanced radiation sensitivity in TLS(–/–) mice. EMBO J 19: 453–462.
Kwiatkowski, T.J., Jr., Bosco, D.A., Leclerc, A.L., et al. (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323: 1205–1208.
La Spada, A.R., Peterson, K.R., Meadows, S.A., et al. (1998) Androgen receptor YAC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum Mol Genet 7: 959–967.
Lagier-Tourenne, C., Polymenidou, M., and Cleveland, D.W. (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19: R46–R64.
Lai, C., Lin, X., Chandran, J., et al. (2007) The G59S mutation in p150(glued) causes dysfunction of dynactin in mice. J Neurosci 27: 13982–13990.
Laird, F.M., Farah, M.H., Ackerley, S., et al. (2008) Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J Neurosci 28: 1997–2005.
Le, T.T., Pham, L.T., Butchbach, M.E.R., et al. (2005) SMNΔ7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14: 845–857.
Lee, M.K., Marszalek, J.R., and Cleveland, D.W. (1994) A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13: 975–988.
Lee, V.M.-Y., Goedert, M., and Trojanowski, J.Q. (2001) Neurodegenerative tauopathies. Ann Rev Neurosci 24: 1121–1159.
Lee, Y., Mikesh, M., Smith, I., Rimer, M., and Thompson, W. (2011) Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol 356: 432–444.
Lefebvre, S., Bürglen, L., Reboullet, S., et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155–165.
Leung, C.L., He, C.Z., Kaufmann, P., et al. (2004) A pathogenic peripherin gene mutation in a patient with amyotrophic lateral sclerosis. Brain Pathol 14: 290–296.
Levy, J.R., Sumner, C.J., Caviston, J.P., et al. (2006) A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J Cell Biol 172: 733–745.
Ling, K.K., Gibbs, R.M., Feng, Z., and Ko, C.P. (2012) Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum Mol Genet 21: 185–195.
Ling, K.K., Lin, M.Y., Zingg, B., Feng, Z., and Ko, C.P. (2010) Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 5: e15457.
Liu, H., Shafey, D., Moores, J.N., and Kothary, R. (2010) Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy. J Neurosci Res 88: 111–122.
Liu, J., Lillo, C., Jonsson, P.A., et al. (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43: 5–17.
Liu, Q., Fischer, U., Wang, F., and Dreyfuss, G. (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90: 1013–1021.
Lorson, C.L. and Androphy, E.J. (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9: 259–265.
Magrane, J. and Manfredi, G. (2009) Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid Redox Signal 11: 1615–1626.
Malik, B., Nirmalananthan, N., Bilsland, L.G., et al. (2011) Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Hum Mol Genet 20: 1776–1786.
Masu, Y., Wolf, E., Holtmann, B., et al. (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365: 27–32.
Mattis, V.B., Bowerman, M., Kothary, R., and Lorson, C.L. (2008) A SMNΔ7 read-through product confers functionality to the SMNΔ7 protein. Neurosci Lett 442: 54–58.
Mayford, M., Bach, M.E., Huang, Y.Y., et al. (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274: 1678–1683.
McAndrew, P.E., Parsons, D.W., Simard, L.R., et al. (1997) Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60: 1411–1422.
McGovern, V.L., Gavrilina, T.O., Beattie, C.E., and Burghes, A.H.M. (2008) Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 17: 2900–2909.
Meister, G., Buhler, D., Pillai, R., Lottspeich, F., and Fischer, U. (2001) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3: 945–949.
Mentis, G.Z., Blivis, D., Liu, W., et al. (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69: 453–467.
Merry, D.E. (2005) Animal models of Kennedy disease. NeuroRx 2: 471–479.
Merry, D.E., Kobayashi, Y., Bailey, C.K., Taye, A.A., and Fischbeck, K.H. (1998) Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum Mol Genet 7: 693–701.
Michaud, M., Arnoux, T., Bielli, S., et al. (2010) Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 38: 125–135.
Mitchell, J.C., McGoldrick, P., Vance, C., et al. (2013) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125: 273–288.
Monani, U.R., Pastore, M.T., Gavrilina, T.O., et al. (2003) A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160: 41–52.
Monani, U.R., Sendtner, M., Coovert, D.D., et al. (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn–/– mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9: 333–339.
Monks, D.A., Johansen, J.A., Mo, K., et al. (2007) Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci USA 104: 18259–18264.
Montie, H.L. and Merry, D.E. (2009) Autophagy and access: understanding the role of androgen receptor subcellular localization in SBMA. Autophagy 5: 1194–1197.
Murray, L.M., Comley, L.H., Thomson, D., et al. (2008) Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 17: 949–962.
Neumann, M., Sampathu, D.M., Kwong, L.K., et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133.
Nie, Z., Wu, J., Zhai, J., et al. (2002) Untranslated element in neurofilament mRNA has neuropathic effect on motor neurons of transgenic mice. J Neurosci 22: 7662–7670.
Oosthuyse, B., Moons, L., Storkebaum, E., et al. (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28: 131–138.
Park, G.-H., Maeno-Hikichi, Y., Awano, T., Landmesser, L.T., and Monani, U.R. (2010) Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci 30: 12005–12019.
Pasinelli, P., Belford, M.E., Lennon, N., et al. (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43: 19–30.
Pellizzoni, L., Yong, J., and Dreyfuss, G. (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298: 1775–1779.
Philips, T. and Robberecht, W. (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10: 253–263.
Puls, I., Jonnakuty, C., LaMonte, B.H., et al. (2003) Mutant dynactin in motor neuron disease. Nat Genet 33: 455–456.
Ramsden, M., Kotilinek, L., Forster, C., et al. (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25: 10637–10647.
Ranganathan, S., Harmison, G.G., Meyertholen, K., et al. (2009) Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum Mol Genet 18: 27–42.
Reaume, A.G., Elliott, J.L., Hoffman, E.K., et al. (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13: 43–47.
Riessland, M., Ackermann, B., Förster, A., et al. (2010) SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19: 1492–1506.
Ripps, M.E., Huntley, G.W., Hof, P.R., Morrison, J.H., and Gordon, J.W. (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 92: 689–693.
Rosen, D.R., Siddique, T., Patterson, D., et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62.
Rouleau, G.A., Clark, A.W., Rooke, K., et al. (1996) SOD1 mutation is assosiated with accumulation of neurofilaments in amyotrophic lateral scelaries. Ann Neurol 39: 128–131.
Rudnik-Schoneborn, S., Goebel, H.H., Schlote, W., et al. (2003) Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. Neurology 60: 983–987.
Russman, B.S. (2007) Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol 22: 946–951.
Schindowski, K., Bretteville, A., Leroy, K., et al. (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169: 599–616.
Schrank, B., Götz, R., Gunnersen, J.M., et al. (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94: 9920–9925.
Sephton, C.F., Good, S.K., Atkin, S., et al. (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285: 6826–6834.
Shan, X., Chiang, P.M., Price, D.L., and Wong, P.C. (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107: 16325–16330.
Sleigh, J.N., Gillingwater, T.H., and Talbot, K. (2011) The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech 4: 457–467.
Sopher, B.L., Thomas, P.S., Jr., LaFevre-Bernt, M.A., et al. (2004) Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41: 687–899.
Spada, A.R.L., Wilson, E.M., Lubahn, D.B., Harding, A.E., and Fischbeck, K.H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79.
Sreedharan, J., Blair, I.P., Tripathi, V.B., et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319: 1668–1672.
Stallings, N.R., Puttaparthi, K., Luther, C.M., Burns, D.K., and Elliott, J.L. (2010) Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 40: 404–414.
Subramaniam, J.R., Lyons, W.E., Liu, J., et al. (2002) Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat Neurosci 5: 301–307.
Swarup, V. and Julien, J.P. (2011) ALS pathogenesis: recent insights from genetics and mouse models. Prog Neuropsychopharmacol Biol Psychiatry 35: 363–369.
Swarup, V., Phaneuf, D., Bareil, C., et al. (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134: 2610–2626.
Szaro, B.G. and Strong, M. J. (2010) Post-transcriptional control of neurofilaments: new roles in development, regeneration and neurodegenerative disease. Trends Neurosci 33: 27–37.
Taes, I., Goris, A., Lemmens, R., et al. (2010) Tau levels do not influence human ALS or motor neuron degeneration in the SOD1G93A mouse. Neurology 74: 1687–1693.
Takeyama, K., Ito, S., Yamamoto, A., et al. (2002) Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35: 855–864.
Tatebayashi, Y., Miyasaka, T., Chui, D.-H., et al. (2002) Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 99: 13896–13901.
Thau, N., Jungnickel, J., Knippenberg, S., et al. (2012) Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2. Neurobiol Dis 47: 248–257.
Tobisawa, S., Hozumi, Y., Arawaka, S., et al. (2003) Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem Biophys Res Comm 303: 496–503.
Tsai, K.J., Yang, C.H., Fang, Y.H., et al. (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207: 1661–1673.
Tudor, E.L., Galtrey, C.M., Perkinton, M.S., et al. (2010) Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 167: 774–785.
Turner, B.J., Parkinson, N.J., Davies, K.E., and Talbot, K. (2009) Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 34: 511–517.
Turner, B.J. and Talbot, K. (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85: 94–134.
Urushitani, M., Kurisu, J., Tsukita, K., and Takahashi, R. (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83: 1030–1042.
Van Deerlin, V.M., Leverenz, J.B., Bekris, L.M., et al. (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7: 409–416.
Van Den Bosch, L. (2011) Genetic rodent models of amyotrophic lateral sclerosis. J Biomed Biotechnol 2011: 348765.
Vance, C., Rogelj, B., Hortobagyi, T., et al. (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323: 1208–1211.
Verbeeck, C., Deng, Q., Dejesus-Hernandez, M., et al. (2012) Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener 7: 53.
Vidal, M., Morris, R., Grosveld, F., and Spanopoulou, E. (1990) Tissue-specific control elements of the Thy-1 gene. EMBO J 9: 833–840.
Vitte, J.M., Davoult, B., Roblot, N., et al. (2004) Deletion of murine Smn exon 7 directed to liver leads to severe defect of liver development associated with iron overload. Am J Pathol 165: 1731–1741.
Wade-Martins, R., Smith, E.R., Tyminski, E., Chiocca, E.A., and Saeki, Y. (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 19: 1067–1070.
Wang, J., Ma, J.H., and Giffard, R.G. (2005) Overexpression of copper/zinc superoxide dismutase decreases ischemia-like astrocyte injury. Free Radic Biol Med 38: 1112–1118.
Wang, J., Slunt, H., Gonzales, V., et al. (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12: 2753–2764.
Wang, J., Xu, G., Gonzales, V., et al. (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10: 128–138.
Wang, L., Deng, H.X., Grisotti, G., et al. (2009) Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse. Hum Mol Genet 18: 1642–1651.
Watanabe, Y., Yasui, K., Nakano, T., et al. (2005) Mouse motor neuron disease caused by truncated SOD1 with or without C-terminal modification. Brain Res Mol Brain Res 135: 12–20.
Wegorzewska, I. and Baloh, R.H. (2011) TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis 8: 262–274.
Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M., and Baloh, R.H. (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106: 18809–18814.
Wils, H., Kleinberger, G., Janssens, J., et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107: 3858–3863.
Wishart, T.M., Huang, J.P.-W., Murray, L.M., et al. (2010) SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 19: 4216–4228.
Wong, P.C., Pardo, C.A., Borchelt, D.R., et al. (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105–1116.
Workman, E., Saieva, L., Carrel, T.L., et al. (2009) A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice. Hum Mol Genet 18: 2215–2229.
Wu, L.S., Cheng, W.C., Hou, S.C., et al. (2010) TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48: 56–62.
Xu, Y.F., Gendron, T.F., Zhang, Y.J., et al. (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30: 10851–10859.
Xu, Y.F., Zhang, Y.J., Lin, W.L., et al. (2011) Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Mol Neurodegener 6: 73.
Yamanaka, K., Chun, S.J., Boillee, S., et al. (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11: 251–253.
Yamanaka, K., Miller, T.M., McAlonis-Downes, M., et al. (2006) Progressive spinal axonal degeneration and slowness in ALS2-deficient mice. Ann Neurol 60: 95–104.
Yokoseki, A., Shiga, A., Tan, C.F., et al. (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63: 538–542.
Yoshiyama, Y., Higuchi, M., Zhang, B., et al. (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53: 337–351.
Zhang, Y.J., Xu, Y.F., Cook, C., et al. (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106: 7607–7612.
Zhang, Z., Lotti, F., Dittmar, K., Younis, I., et al. (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133: 585–600.
Zhou, H., Huang, C., Chen, H., et al. (2010) Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6: e1000887.