Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-30T14:02:45.269Z Has data issue: false hasContentIssue false

5 - Blood pressure and blood volume relationship

from Part 3a - Physiology: the cardiovascular system

Published online by Cambridge University Press:  13 August 2009

Sylva Dolenska
Affiliation:
William Harvey Hospital, Kent
Get access

Summary

Following blood loss, the body draws on its reserves to maintain blood flow and oxygen delivery to the tissues. Initially, water is retained by the kidney and extracellular fluid is drawn into the intravascular compartment. If blood loss continues, physiological compensatory mechanisms bring about changes in other physiological parameters to maintain blood flow to the tissues, and in a more severe haemorrhage to the vital organs only. Haemorrhage is classified into four degrees of severity:

  • Class I: ≤ 15% or ≤ 750 ml blood loss. Stroke volume may fall minimally at lower levels of loss, resulting in a minimal tachycardia to maintain cardiac output. This is the situation induced by venesection in a blood donor.

  • Class II: 15–30% or 750–1500 ml blood loss. Tachycardia is noticeable while systolic blood pressure is still maintained; diastolic pressure, however, rises due to the higher level of circulating catecholamines. Mean blood pressure is maintained but flow to the organs without autoregulation of blood flow is reduced (e.g. muscle, skin). Because of the reduced skin blood flow, core-to-skin temperature difference starts to rise. Renal blood flow is minimally affected and urine output is maintained at a physiological minimum. Cerebral blood flow is maintained due to autoregulation but anxiety due to the circulating catecholamines is evident.

  • Class III: 30–40% or 1500–2000 ml blood loss. The compensatory mechanisms are being exhausted and circulatory failure starts to develop. Tachycardia is marked and there is a measurable fall in systolic blood pressure. Tachypnoea is present due to reduced O2 delivery to the tissues. Urine output decreases significantly, core-to-skin temperature difference increases further and mental changes are pronounced.

  • […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×