Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T18:52:55.392Z Has data issue: false hasContentIssue false

Chapter 4 - Genome management and analysis: prokaryotes

Published online by Cambridge University Press:  05 June 2012

Colin R. Harwood
Affiliation:
University of Newcastle, UK
Anil Wipat
Affiliation:
University of Newcastle, UK
Colin Ratledge
Affiliation:
University of Hull
Bjorn Kristiansen
Affiliation:
EU Biotech Consulting, Norway
Get access

Summary

Introduction

Gene manipulation is a core technology used for a wide variety of academic and industrial applications. In addition to representing an extremely powerful analytical tool, it can be used to: (i) increase the yield and quality of existing products (e.g. proteins, metabolites or even whole cells); (ii) improve the characteristics of existing products (e.g. via protein engineering); (iii) produce existing products by new routes (e.g. pathway engineering); and (iv) develop novel products not previously found in nature (e.g. directed or hybrid biosynthesis). This chapter assumes knowledge of the basic structure and properties of nucleic acids, the organisation of the genetic information into genes and operons, and the mechanisms by which bacteria transcribe and translate this encoded information to synthesise proteins (see also Chapter 2).

Bacterial chromosomes and natural gene transfer

Bacterial chromosomes

Chromosomes are the principal repositories of the genetic information, the site of gene expression and the vehicle of inheritance. The term chromosome, meaning dark-staining body, was originally applied to the structures visualised in eukaryotic organisms by light microscopy. The use of this term has now been extended to describe the physical structures that encode the genetic (hereditary) information in all organisms. The term genome is used in the more abstract sense to refer to the sum total of the genetic information of an organism. The term nucleoid is applied to a physical entity that can be isolated from a bacterial cell and that contains the chromosome in association with other components including RNA and protein.

Type
Chapter
Information
Basic Biotechnology , pp. 73 - 118
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×