Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T20:07:02.843Z Has data issue: false hasContentIssue false

3 - Membrane transport – nutrient uptake and protein excretion

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Microbes import the materials needed for growth and survival from their environment and export metabolites. As described in the previous chapter, the cytoplasm is separated from the environment by the hydrophobic cytoplasmic membrane, which is impermeable to hydrophilic solutes. Because of this permeability barrier exerted by the phospholipid component, almost all hydrophilic compounds can only pass through the membrane by means of integral membrane proteins. These are called carrier proteins, transporters or permeases (a website devoted entirely to transport can be found at www-biology.ucsd.edu/∼msaier/transport/).

Solute transport can be classified as diffusion, active transport or group translocation according to the mechanisms involved. Diffusion does not require energy; energy is invested for active transport; and solutes transported by group translocation are chemically modified during this process. Some solutes are accumulated in the cell against a concentration gradient of several orders of magnitude, and energy needs to be invested for such accumulation.

Ionophores: models of carrier proteins

There are two models which explain solute transport mediated by carrier proteins: the mobile carrier model and the pore model. The solute binds the carrier at one side of the membrane and dissociates at the other side according to the mobile carrier model, while the pore model proposes that the carrier protein forms a pore across the membrane through which the solute passes. A certain group of antibiotics can make the membrane permeable to ions. These are called ionophores and are useful compounds to assist the study of membrane transport.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, P. N. & DiRusso, C. C. (2003). Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiology and Molecular Biology Reviews 67, 454–472.CrossRefGoogle ScholarPubMed
Busch, W. & Saier, M. H. Jr. (2002). The transporter classification (TC) system, 2002. Critical Reviews in Biochemistry and Molecular Biology 37, 287–337.CrossRefGoogle ScholarPubMed
Calamita, G. (2000). The Escherichia coli aquaporin-Z water channel. Molecular Microbiology 37, 254–262.CrossRefGoogle ScholarPubMed
Eggeling, L. & Sahm, H. (2003). New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Archives of Microbiology 180, 155–160.Google ScholarPubMed
Hagenbuch, B. & Meier, P. J. (2003). The superfamily of organic anion transporting polypeptides. Biochimica et Biophysica Acta – Biomembranes 1609, 1–18.CrossRefGoogle ScholarPubMed
Harold, F. M. (2005). Molecules into cells: specifying spatial architecture. Microbiology and Molecular Biology Reviews 69, 544–564.CrossRefGoogle ScholarPubMed
Hedfalk, K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P. & Neutze, R. (2006). Aquaporin gating. Current Opinion in Structural Biology 16, 447–456.CrossRefGoogle ScholarPubMed
Hohmann, I., Bill, R. M., Kayingo, I. & Prior, B. A. (2000). Microbial MIP channels. Trends in Microbiology 8, 33–38.CrossRefGoogle ScholarPubMed
Klebba, P. E. & Newton, S. M. C. (1998). Mechanisms of solute transport through outer membrane porins: burning down the house. Current Opinion in Microbiology 1, 238–247.CrossRefGoogle Scholar
Lloubes, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A. & Journet, L. (2001). The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?Research in Microbiology 152, 523–529.CrossRefGoogle ScholarPubMed
Pallen, M. J., Chaudhuri, R. R. & Henderson, I. R. (2003). Genomic analysis of secretion systems. Current Opinion in Microbiology 6, 519–527.CrossRefGoogle ScholarPubMed
Paulsen, I. T. (2003). Multidrug efflux pumps and resistance: regulation and evolution. Current Opinion in Microbiology 6, 446–451.CrossRefGoogle ScholarPubMed
Pugsley, A. P., Francetic, O., Driessen, A. J. & Lorenzo, V. (2004). Getting out: protein traffic in prokaryotes. Molecular Microbiology 52, 3–11.CrossRefGoogle ScholarPubMed
Saier, M. H. (2000). Families of transmembrane sugar transport proteins. Molecular Microbiology 35, 699–710.CrossRefGoogle ScholarPubMed
Saier, M. H. & Reizer, J. (1992). Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate – sugar phosphotransferase system. Journal of Bacteriology 174, 1433–1438.CrossRefGoogle ScholarPubMed
Sobczak, I. & Lolkema, J. S. (2005). Structural and mechanistic diversity of secondary transporters. Current Opinion in Microbiology 8, 161–167.CrossRefGoogle ScholarPubMed
Kakinuma, Y. (1998). Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiology and Molecular Biology Reviews 62, 1021–1045.Google ScholarPubMed
Lemieux, M. J., Huang, Y. & Wang, D.-N. (2004). The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Current Opinion in Structural Biology 14, 405–412.CrossRefGoogle ScholarPubMed
Lolkema, J. S., Poolman, B. & Konings, W. N. (1998). Bacterial solute uptake and efflux systems. Current Opinion in Microbiology 1, 248–253.CrossRefGoogle ScholarPubMed
Reizer, J., Reizer, A. & Saier, M. H. (1994). A functional superfamily of sodium/solute symporters. Biochimica et Biophysica Acta – Biomembranes 1197, 133–166.CrossRefGoogle ScholarPubMed
Saier, M. H. (2000). Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology–UK 146, 1775–1795.CrossRefGoogle ScholarPubMed
Saier, M. H. (2000). Vectorial metabolism and the evolution of transport systems. Journal of Bacteriology 182, 5029–5035.CrossRefGoogle ScholarPubMed
Sobczak, I. & Lolkema, J. S. (2005). The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism. Microbiology and Molecular Biology Reviews 69, 665–695.CrossRefGoogle ScholarPubMed
Vanveen, H. W. (1997). Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie van Leeuwenhoek 72, 299–315.CrossRefGoogle Scholar
Barabote, R. D. & Saier, M. H. Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiology and Molecular Biology Reviews 69, 608–634.CrossRefGoogle ScholarPubMed
Vadeboncoeur, C. & Pelletier, M. (1997). The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiology Reviews 19, 187–207.CrossRefGoogle ScholarPubMed
Albers, S. V., Koning, S. M., Konings, W. N. & Driessen, A. J. (2004). Insights into ABC transport in archaea. Journal of Bioenergetics and Biomembranes 36, 5–15.CrossRefGoogle ScholarPubMed
Cabezon, E. & Cruz, F. (2006). TrwB: an F1-ATPase-like molecular motor involved in DNA transport during bacterial conjugation. Research in Microbiology 157, 299–305.CrossRefGoogle Scholar
Dassa, E. & Bouige, P. (2001). The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Research in Microbiology 152, 211–229.CrossRefGoogle ScholarPubMed
Davidson, A. L. (2002). Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. Journal of Bacteriology 184, 1225–1233.CrossRefGoogle ScholarPubMed
Davidson, A. L. & Chen, J. (2004). ATP-binding cassette transporter in bacteria. Annual Review of Biochemistry 73, 241–268.CrossRefGoogle ScholarPubMed
Doerrler, W. T. (2006). Lipid trafficking to the outer membrane of Gram-negative bacteria. Molecular Microbiology 60, 542–552.CrossRefGoogle ScholarPubMed
Elferink, M. G., Albers, S. V., Konings, W. N. & Driessen, A. J. (2001). Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Molecular Microbiology 39, 1494–1503.CrossRefGoogle ScholarPubMed
Higgins, C. F. (2001). ABC transporters: physiology, structure and mechanism: an overview. Research in Microbiology 152, 205–210.CrossRefGoogle ScholarPubMed
Horn, C., Jenewein, S., Sohn-Bosser, L., Bremer, E. & Schmitt, L. (2005). Biochemical and structural analysis of the Bacillus subtilis ABC transporter OpuA and its isolated subunits. Journal of Molecular Microbiology and Biotechnology 10, 76–91.CrossRefGoogle ScholarPubMed
Jones, P. M. & George, A. M. (1999). Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiology Letters 179, 187–202.CrossRefGoogle ScholarPubMed
Koning, S. M., Albers, S. V., Konings, W. N. & Driessen, A. J. M. (2002). Sugar transport in hyper-thermophilic archaea. Research in Microbiology 153, 61–67.CrossRefGoogle ScholarPubMed
Locher, K. P. (2004). Structure and mechanism of ABC transporters. Current Opinion in Structural Biology 14, 426–431.CrossRefGoogle ScholarPubMed
Narita, S., Matsuyama, S. & Tokuda, H. (2004). Lipoprotein trafficking inEscherichia coli. Archives of Microbiology 182, 1–6.Google Scholar
Pohl, A., Devaux, P. F. & Herrmann, A. (2005). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids 1733, 29–52.CrossRefGoogle ScholarPubMed
Ranquin, A. & Gelder, P. (2004). Maltoporin: sugar for physics and biology. Research in Microbiology 155, 611–616.CrossRefGoogle ScholarPubMed
Silver, R. P., Prior, K., Nsahlai, C. & Wright, L. F. (2001). ABC transporters and the export of capsular polysaccharides from Gram-negative bacteria. Research in Microbiology 152, 357–364.CrossRefGoogle ScholarPubMed
Kelly, D. J. & Thomas, G. H. (2001). The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiology Reviews 25, 405–424.CrossRefGoogle ScholarPubMed
Winnen, B., Hvorup, R. N. & Saier, M. H. Jr. (2003). The tripartite tricarboxylate transporter (TTT) family. Research in Microbiology 154, 457–465.CrossRefGoogle ScholarPubMed
Braun, V. & Braun, M. (2002). Active transport of iron and siderophore antibiotics. Current Opinion in Microbiology 5, 194–201.CrossRefGoogle ScholarPubMed
Cornelis, P. & Matthijs, S. (2002). Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environmental Microbiology 4, 787–798.CrossRefGoogle ScholarPubMed
Llamas, M. A. & Bitter, W. (2006). Iron gate: the translocation system. Journal of Bacteriology 188, 3172–3174.CrossRefGoogle ScholarPubMed
Postle, K. & Kadner, R. J. (2003). Touch and go: tying TonB to transport. Molecular Microbiology 49, 869–882.CrossRefGoogle ScholarPubMed
Schalk, I. J., Yue, W. W. & Buchanan, S. K. (2004). Recognition of iron-free siderophores by TonB-dependent iron transporters. Molecular Microbiology 54, 14–22.CrossRefGoogle ScholarPubMed
Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. (2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Molecular Microbiology 45, 1177–1190.CrossRefGoogle ScholarPubMed
Wandersman, C. & Delepelaire, P. (2004). Bacterial iron sources: from siderophores to hemophores. Annual Review of Microbiology 58, 611–647.CrossRefGoogle ScholarPubMed
Albers, S. V., Szabo, Z. & Driessen, A. J. M. (2006). Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nature Reviews Microbiology 4, 537–547.CrossRefGoogle ScholarPubMed
Alder, N. N. & Theg, S. M. (2003). Energy use by biological protein transport pathways. Trends in Biochemical Sciences 28, 442–451.CrossRefGoogle ScholarPubMed
Buist, G., Ridder, A. N. J. A., Kok, J. & Kuipers, O. P. (2006). Different subcellular locations of secretome components of Gram-positive bacteria. Microbiology-UK 152, 2867–2874.CrossRefGoogle ScholarPubMed
Clemons, W. M. Jr, Menetret, J.-F., Akey, C. W. & Rapoport, T. A. (2004). Structural insight into the protein translocation channel. Current Opinion in Structural Biology 14, 390–396.CrossRefGoogle ScholarPubMed
Dalbey, R. E. & Chen, M. (2004). Sec-translocase mediated membrane protein biogenesis. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 37–53.CrossRefGoogle ScholarPubMed
Desvaux, M., Parham, N. J., Scott-Tucker, A. & Henderson, I. R. (2004). The general secretory pathway: a general misnomer?Trends in Microbiology 12, 306–309.CrossRefGoogle ScholarPubMed
Ellgaard, L., Molinari, M. & Helenius, A. (1999). Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888.CrossRefGoogle ScholarPubMed
Hegde, R. S. & Bernstein, H. D. (2006). The surprising complexity of signal sequences. Trends in Biochemical Sciences 31, 563–571.CrossRefGoogle ScholarPubMed
Holland, I. B. (2004). Translocation of bacterial proteins – an overview. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 5–16.CrossRefGoogle ScholarPubMed
Lory, S. (1998). Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Current Opinion in Microbiology 1, 27–35.CrossRefGoogle ScholarPubMed
Luirink, J. & Sinning, I. (2004). SRP-mediated protein targeting: structure and function revisited. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 17–35.Google ScholarPubMed
Manting, E. H. & Driessen, A. J. M. (2000). Escherichia coli translocase: the unravelling of a molecular machine. Molecular Microbiology 37, 226–238.CrossRefGoogle ScholarPubMed
Nakatogawa, H., Murakami, A. & Ito, K. (2004). Control of SecA and SecM translation by protein secretion. Current Opinion in Microbiology 7, 145–150.CrossRefGoogle ScholarPubMed
Pohlschroeder, M., Gimenez, M. I. & Jarrell, K. F. (2005). Protein transport in Archaea: Sec and twin arginine translocation pathways. Current Opinion in Microbiology 8, 713–719.CrossRefGoogle Scholar
Pohlschroeder, M., Hartmann, E., Hand, N. J., Dilks, K. & Haddad, A. (2005). Diversity and evolution of protein translocation. Annual Review of Microbiology 59, 91–111.CrossRefGoogle Scholar
Shental-Bechor, D., Fleishman, S. J. & Ben-Tal, N. (2006). Has the code for protein translocation been broken?Trends in Biochemical Sciences 31, 192–196.CrossRefGoogle ScholarPubMed
Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S. & Dijl, J. M. (2000). Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews 64, 515–547.CrossRefGoogle ScholarPubMed
Tjalsma, H., Antelmann, H., Jongbloed, J. D. H., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J.-Y. F., Westers, H., Zanen, G., Quax, W. J., Kuipers, O. P., Bron, S., Hecker, M. & Dijl, J. M. (2004). Proteomics of protein secretion by Bacillus subtilis: separating the ‘secrets’ of the secretome. Microbiology and Molecular Biology Reviews 68, 207–233.CrossRefGoogle ScholarPubMed
Sluis, E. O. & Driessen, A. J. M. (2006). Stepwise evolution of the Sec machinery in Proteobacteria. Trends in Microbiology 14, 105–108.CrossRefGoogle ScholarPubMed
Wely, K. H. M., Swaving, J., Freudl, R. & Driessen, A. J. M. (2001). Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiology Reviews 25, 437–454.CrossRefGoogle ScholarPubMed
White, S. H. & Heijne, G. (2005). Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology 15, 378–386.CrossRefGoogle ScholarPubMed
Wild, K., Rosendal, K. R. & Sinning, I. (2004). A structural step into the SRP cycle. Molecular Microbiology 53, 357–363.CrossRefGoogle ScholarPubMed
Detmers, F. J. M., Lanfermeijer, F. C. & Poolman, B. (2001). Peptides and ATP binding cassette peptide transporters. Research in Microbiology 152, 245–258.CrossRefGoogle ScholarPubMed
Omori, K. & Idei, A. (2003). Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. Journal of Bioscience and Bioengineering 95, 1–12.CrossRefGoogle ScholarPubMed
Berks, B. C., Sargent, F. & Palmer, T. (2000). The Tat protein export pathway. Molecular Microbiology 35, 260–274.CrossRefGoogle ScholarPubMed
Berks, B. C., Palmer, T. & Sargent, F. (2003). The Tat protein translocation pathway and its role in microbial physiology. Advances in Microbial Physiology 47, 187–254.CrossRefGoogle ScholarPubMed
Berks, B. C., Palmer, T. & Sargent, F. (2005). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Current Opinion in Microbiology 8, 174–181.CrossRefGoogle ScholarPubMed
Bronstein, P., Marrichi, M. & DeLisa, M. P. (2004). Dissecting the twin-arginine translocation pathway using genome-wide analysis. Research in Microbiology 155, 803–810.CrossRefGoogle ScholarPubMed
Halic, M. & Beckmann, R. (2005). The signal recognition particle and its interactions during protein targeting. Current Opinion in Structural Biology 15, 116–125.CrossRefGoogle ScholarPubMed
Lee, P. A., Tullman-Ercek, D. & Georgiou, G. (2006). The bacterial twin-arginine translocation pathway. Annual Review of Microbiology 60, 373–395.CrossRefGoogle ScholarPubMed
Meloni, S., Rey, L., Sidler, S., Imperial, J., Ruiz-Argueso, T. & Palacios, J. M. (2003). The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Molecular Microbiology 48, 1195–1207.CrossRefGoogle ScholarPubMed
Muller, M. (2005). Twin-arginine-specific protein export in Escherichia coli. Research in Microbiology 156, 131–136.CrossRefGoogle ScholarPubMed
Palmer, T., Sargent, F. & Berks, B. C. (2005). Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends in Microbiology 13, 175–180.CrossRefGoogle ScholarPubMed
Robinson, C. & Bolhuis, A. (2001). Protein targeting by the twin-arginine translocation pathway. Nature Reviews Molecular Cell Biology 2, 350–356.CrossRefGoogle ScholarPubMed
Robinson, C. & Bolhuis, A. (2004). Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 135–147.CrossRefGoogle ScholarPubMed
Sargent, F., Berks, B. C. & Palmer, T. (2002). Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Archives of Microbiology 178, 77–84.CrossRefGoogle ScholarPubMed
Yen, M. R., Tseng, Y. H., Nguyen, E. H., Wu, L. F. & Saier, M. H. Jr. (2002). Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Archives of Microbiology 177, 441–450.CrossRefGoogle ScholarPubMed
Aizawa, S. (2001). Bacterial flagella and type III secretion systems. FEMS Microbiology Letters 202, 157–164.CrossRefGoogle ScholarPubMed
Burns, D. L. (2003). Type IV transporters of pathogenic bacteria. Current Opinion in Microbiology 6, 29–34.CrossRefGoogle ScholarPubMed
Buttner, D. & Bonas, U. (2002). Port of entry – the type III secretion translocon. Trends in Microbiology 10, 186–192.CrossRefGoogle ScholarPubMed
Cascales, E. & Christie, P. J. (2004). The versatile bacterial type IV secretion systems. Nature Review Microbiology 1, 137–149.CrossRefGoogle Scholar
Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual Review of Microbiology 59, 451–485.CrossRefGoogle ScholarPubMed
Cianciotto, N. P. (2005). Type II secretion: a protein secretion system for all seasons. Trends in Microbiology 13, 581–588.CrossRefGoogle ScholarPubMed
Coombes, B. K. & Finlay, B. B. (2005). Insertion of the bacterial type III translocon: not your average needle stick. Trends in Microbiology 13, 92–95.CrossRefGoogle ScholarPubMed
Cotter, S. E., Surana, N. K. & Geme, J. W. III (2005). Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends in Microbiology 13, 199–205.CrossRefGoogle ScholarPubMed
Gier, J. W. & Luirink, J. (2001). Biogenesis of inner membrane proteins in Escherichia coli. Molecular Microbiology 40, 314–322.CrossRefGoogle ScholarPubMed
Desvaux, M., Parham, N. J. & Henderson, I. R. (2004). The autotransporter secretion system. Research in Microbiology 155, 53–60.CrossRefGoogle ScholarPubMed
Facey, S. J. & Kuhn, A. (2004). Membrane integration of Escherichia coli model membrane proteins. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 55–66.CrossRefGoogle ScholarPubMed
Fekkes, P. & Driessen, A. J. M. (1999). Protein targeting to the bacterial cytoplasmic membrane. Microbiology and Molecular Biology Reviews 63, 161–173.Google ScholarPubMed
Filloux, A. (2004). The underlying mechanisms of type II protein secretion. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 163–179.CrossRefGoogle ScholarPubMed
Frankel, G. (2002). Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Molecular Microbiology 45, 905–916.Google Scholar
Ghosh, P. (2004). Process of protein transport by the type III secretion system. Microbiology and Molecular Biology Reviews 68, 771–795.CrossRefGoogle ScholarPubMed
Girard, V. & Mourez, M. (2006). Adhesion mediated by autotransporters of Gram-negative bacteria: structural and functional features. Research in Microbiology 157, 407–416.CrossRefGoogle ScholarPubMed
Henderson, I. R., Cappello, R. & Nataro, J. P. (2000). Autotransporter proteins, evolution and redefining protein secretion. Trends in Microbiology 8, 529–532.CrossRefGoogle ScholarPubMed
Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. (2004). Type V protein secretion pathway: the autotransporter story. Microbiology and Molecular Biology Reviews 68, 692–744.CrossRefGoogle ScholarPubMed
Johnson, T. L., Abendroth, J., Hol, W. G. J. & Sandkvist, M. (2006).Type II secretion: from structure to function. FEMS Microbiology Letters 255, 175–186.CrossRefGoogle ScholarPubMed
Kim, D. S. H., Chao, Y. & Saier, M. H. Jr. (2006). Protein-translocating trimeric autotransporters of Gram-negative bacteria. Journal of Bacteriology 188, 5655–5667.CrossRefGoogle ScholarPubMed
Lammertyn, E. & Anne, J. (2004). Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiology Letters 238, 273–279.Google ScholarPubMed
Lawley, T. D., Klimke, W. A., Gubbins, M. J. & Frost, L. S. (2003). F factor conjugation is a true type IV secretion system. FEMS Microbiology Letters 224, 1–15.CrossRefGoogle ScholarPubMed
Linke, D., Riess, T., Autenrieth, I. B., Lupas, A. & Kempf, V. A. J. (2006). Trimeric autotransporter adhesins: variable structure, common function. Trends in Microbiology 14, 264–270.CrossRefGoogle ScholarPubMed
Luirink, J., Heijne, G., Houben, E. & Gier, J. W. (2006). Biogenesis of inner membrane proteins in Escherichi coli. Annual Review of Microbiology 59, 329–355.CrossRefGoogle Scholar
Macnab, R. M. (2003). How bacteria assemble flagella. Annual Review of Microbiology 57, 77–100.CrossRefGoogle ScholarPubMed
Mogensen, J. E. & Otzen, D. E. (2005). Interactions between folding factors and bacterial outer membrane proteins. Molecular Microbiology 57, 326–346.CrossRefGoogle ScholarPubMed
Page, A. L. & Parsot, C. (2002). Chaperones of the type III secretion pathway: jacks of all trades. Molecular Microbiology 46, 1–11.CrossRefGoogle ScholarPubMed
Parsot, C., Hamiaux, C. & Page, A. L. (2003). The various and varying roles of specific chaperones in type III secretion systems. Current Opinion in Microbiology 6, 7–14.CrossRefGoogle Scholar
Peabody, C. R., Chung, Y. J., Yen, M. R., Vidal-Ingigliardi, D., Pugsley, A. P. & Saier, M. H. Jr. (2003). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology-UK 149, 3051–3072.CrossRefGoogle ScholarPubMed
Plano, G. V., Day, J. B. & Ferracci, F. (2001). Type III export: new uses for an old pathway. Molecular Microbiology 40, 284–293.CrossRefGoogle ScholarPubMed
Russel, M. (1998). Macromolecular assembly and secretion across the bacterial cell envelope – type II protein secretion system. Journal of Molecular Biology 279, 485–499.CrossRefGoogle Scholar
Saier, M. H. Jr. (2004). Evolution of bacterial type III protein secretion systems. Trends in Microbiology 12, 113–115.CrossRefGoogle ScholarPubMed
Sandkvist, M. (2001). Biology of type II secretion. Molecular Microbiology 40, 271–283.CrossRefGoogle ScholarPubMed
Thanassi, D. G. & Hultgren, S. J. (2000). Multiple pathways allow protein secretion across the bacterial outer membrane. Current Opinion in Cell Biology 12, 420–430.CrossRefGoogle ScholarPubMed
Thomas, N. A. & Finlay, Brett B. (2003). Establishing order for type III secretion substrates – a hierarchical process. Trends in Microbiology 11, 398–403.CrossRefGoogle ScholarPubMed
Tokuda, H. & Matsuyama, S. (2004). Sorting of lipoproteins to the outer membrane in E. coli. Biochimica et Biophysica Acta – Molecular Cell Research 1693, 5–13.CrossRefGoogle ScholarPubMed
Ton-That, H. & Schneewind, O. (2004). Assembly of pili in Gram-positive bacteria. Trends in Microbiology 12, 228–234.CrossRefGoogle ScholarPubMed
Ulsen, P. & Tommassen, J. (2006). Protein secretion and secreted proteins in pathogenic Neisseriaceae. FEMS Microbiology Reviews 30, 292–319.CrossRefGoogle ScholarPubMed
Yip, C. K. & Strynadka, N. C. J. (2006). New structural insights into the bacterial type III secretion system. Trends in Biochemical Sciences 31, 223–230.CrossRefGoogle ScholarPubMed
Black, P. N. & DiRusso, C. C. (2003). Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiology and Molecular Biology Reviews 67, 454–472.CrossRefGoogle ScholarPubMed
Busch, W. & Saier, M. H. Jr. (2002). The transporter classification (TC) system, 2002. Critical Reviews in Biochemistry and Molecular Biology 37, 287–337.CrossRefGoogle ScholarPubMed
Calamita, G. (2000). The Escherichia coli aquaporin-Z water channel. Molecular Microbiology 37, 254–262.CrossRefGoogle ScholarPubMed
Eggeling, L. & Sahm, H. (2003). New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Archives of Microbiology 180, 155–160.Google ScholarPubMed
Hagenbuch, B. & Meier, P. J. (2003). The superfamily of organic anion transporting polypeptides. Biochimica et Biophysica Acta – Biomembranes 1609, 1–18.CrossRefGoogle ScholarPubMed
Harold, F. M. (2005). Molecules into cells: specifying spatial architecture. Microbiology and Molecular Biology Reviews 69, 544–564.CrossRefGoogle ScholarPubMed
Hedfalk, K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P. & Neutze, R. (2006). Aquaporin gating. Current Opinion in Structural Biology 16, 447–456.CrossRefGoogle ScholarPubMed
Hohmann, I., Bill, R. M., Kayingo, I. & Prior, B. A. (2000). Microbial MIP channels. Trends in Microbiology 8, 33–38.CrossRefGoogle ScholarPubMed
Klebba, P. E. & Newton, S. M. C. (1998). Mechanisms of solute transport through outer membrane porins: burning down the house. Current Opinion in Microbiology 1, 238–247.CrossRefGoogle Scholar
Lloubes, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A. & Journet, L. (2001). The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?Research in Microbiology 152, 523–529.CrossRefGoogle ScholarPubMed
Pallen, M. J., Chaudhuri, R. R. & Henderson, I. R. (2003). Genomic analysis of secretion systems. Current Opinion in Microbiology 6, 519–527.CrossRefGoogle ScholarPubMed
Paulsen, I. T. (2003). Multidrug efflux pumps and resistance: regulation and evolution. Current Opinion in Microbiology 6, 446–451.CrossRefGoogle ScholarPubMed
Pugsley, A. P., Francetic, O., Driessen, A. J. & Lorenzo, V. (2004). Getting out: protein traffic in prokaryotes. Molecular Microbiology 52, 3–11.CrossRefGoogle ScholarPubMed
Saier, M. H. (2000). Families of transmembrane sugar transport proteins. Molecular Microbiology 35, 699–710.CrossRefGoogle ScholarPubMed
Saier, M. H. & Reizer, J. (1992). Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate – sugar phosphotransferase system. Journal of Bacteriology 174, 1433–1438.CrossRefGoogle ScholarPubMed
Sobczak, I. & Lolkema, J. S. (2005). Structural and mechanistic diversity of secondary transporters. Current Opinion in Microbiology 8, 161–167.CrossRefGoogle ScholarPubMed
Kakinuma, Y. (1998). Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiology and Molecular Biology Reviews 62, 1021–1045.Google ScholarPubMed
Lemieux, M. J., Huang, Y. & Wang, D.-N. (2004). The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Current Opinion in Structural Biology 14, 405–412.CrossRefGoogle ScholarPubMed
Lolkema, J. S., Poolman, B. & Konings, W. N. (1998). Bacterial solute uptake and efflux systems. Current Opinion in Microbiology 1, 248–253.CrossRefGoogle ScholarPubMed
Reizer, J., Reizer, A. & Saier, M. H. (1994). A functional superfamily of sodium/solute symporters. Biochimica et Biophysica Acta – Biomembranes 1197, 133–166.CrossRefGoogle ScholarPubMed
Saier, M. H. (2000). Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology–UK 146, 1775–1795.CrossRefGoogle ScholarPubMed
Saier, M. H. (2000). Vectorial metabolism and the evolution of transport systems. Journal of Bacteriology 182, 5029–5035.CrossRefGoogle ScholarPubMed
Sobczak, I. & Lolkema, J. S. (2005). The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism. Microbiology and Molecular Biology Reviews 69, 665–695.CrossRefGoogle ScholarPubMed
Vanveen, H. W. (1997). Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie van Leeuwenhoek 72, 299–315.CrossRefGoogle Scholar
Barabote, R. D. & Saier, M. H. Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiology and Molecular Biology Reviews 69, 608–634.CrossRefGoogle ScholarPubMed
Vadeboncoeur, C. & Pelletier, M. (1997). The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiology Reviews 19, 187–207.CrossRefGoogle ScholarPubMed
Albers, S. V., Koning, S. M., Konings, W. N. & Driessen, A. J. (2004). Insights into ABC transport in archaea. Journal of Bioenergetics and Biomembranes 36, 5–15.CrossRefGoogle ScholarPubMed
Cabezon, E. & Cruz, F. (2006). TrwB: an F1-ATPase-like molecular motor involved in DNA transport during bacterial conjugation. Research in Microbiology 157, 299–305.CrossRefGoogle Scholar
Dassa, E. & Bouige, P. (2001). The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Research in Microbiology 152, 211–229.CrossRefGoogle ScholarPubMed
Davidson, A. L. (2002). Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. Journal of Bacteriology 184, 1225–1233.CrossRefGoogle ScholarPubMed
Davidson, A. L. & Chen, J. (2004). ATP-binding cassette transporter in bacteria. Annual Review of Biochemistry 73, 241–268.CrossRefGoogle ScholarPubMed
Doerrler, W. T. (2006). Lipid trafficking to the outer membrane of Gram-negative bacteria. Molecular Microbiology 60, 542–552.CrossRefGoogle ScholarPubMed
Elferink, M. G., Albers, S. V., Konings, W. N. & Driessen, A. J. (2001). Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Molecular Microbiology 39, 1494–1503.CrossRefGoogle ScholarPubMed
Higgins, C. F. (2001). ABC transporters: physiology, structure and mechanism: an overview. Research in Microbiology 152, 205–210.CrossRefGoogle ScholarPubMed
Horn, C., Jenewein, S., Sohn-Bosser, L., Bremer, E. & Schmitt, L. (2005). Biochemical and structural analysis of the Bacillus subtilis ABC transporter OpuA and its isolated subunits. Journal of Molecular Microbiology and Biotechnology 10, 76–91.CrossRefGoogle ScholarPubMed
Jones, P. M. & George, A. M. (1999). Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiology Letters 179, 187–202.CrossRefGoogle ScholarPubMed
Koning, S. M., Albers, S. V., Konings, W. N. & Driessen, A. J. M. (2002). Sugar transport in hyper-thermophilic archaea. Research in Microbiology 153, 61–67.CrossRefGoogle ScholarPubMed
Locher, K. P. (2004). Structure and mechanism of ABC transporters. Current Opinion in Structural Biology 14, 426–431.CrossRefGoogle ScholarPubMed
Narita, S., Matsuyama, S. & Tokuda, H. (2004). Lipoprotein trafficking inEscherichia coli. Archives of Microbiology 182, 1–6.Google Scholar
Pohl, A., Devaux, P. F. & Herrmann, A. (2005). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids 1733, 29–52.CrossRefGoogle ScholarPubMed
Ranquin, A. & Gelder, P. (2004). Maltoporin: sugar for physics and biology. Research in Microbiology 155, 611–616.CrossRefGoogle ScholarPubMed
Silver, R. P., Prior, K., Nsahlai, C. & Wright, L. F. (2001). ABC transporters and the export of capsular polysaccharides from Gram-negative bacteria. Research in Microbiology 152, 357–364.CrossRefGoogle ScholarPubMed
Kelly, D. J. & Thomas, G. H. (2001). The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiology Reviews 25, 405–424.CrossRefGoogle ScholarPubMed
Winnen, B., Hvorup, R. N. & Saier, M. H. Jr. (2003). The tripartite tricarboxylate transporter (TTT) family. Research in Microbiology 154, 457–465.CrossRefGoogle ScholarPubMed
Braun, V. & Braun, M. (2002). Active transport of iron and siderophore antibiotics. Current Opinion in Microbiology 5, 194–201.CrossRefGoogle ScholarPubMed
Cornelis, P. & Matthijs, S. (2002). Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environmental Microbiology 4, 787–798.CrossRefGoogle ScholarPubMed
Llamas, M. A. & Bitter, W. (2006). Iron gate: the translocation system. Journal of Bacteriology 188, 3172–3174.CrossRefGoogle ScholarPubMed
Postle, K. & Kadner, R. J. (2003). Touch and go: tying TonB to transport. Molecular Microbiology 49, 869–882.CrossRefGoogle ScholarPubMed
Schalk, I. J., Yue, W. W. & Buchanan, S. K. (2004). Recognition of iron-free siderophores by TonB-dependent iron transporters. Molecular Microbiology 54, 14–22.CrossRefGoogle ScholarPubMed
Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. (2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Molecular Microbiology 45, 1177–1190.CrossRefGoogle ScholarPubMed
Wandersman, C. & Delepelaire, P. (2004). Bacterial iron sources: from siderophores to hemophores. Annual Review of Microbiology 58, 611–647.CrossRefGoogle ScholarPubMed
Albers, S. V., Szabo, Z. & Driessen, A. J. M. (2006). Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nature Reviews Microbiology 4, 537–547.CrossRefGoogle ScholarPubMed
Alder, N. N. & Theg, S. M. (2003). Energy use by biological protein transport pathways. Trends in Biochemical Sciences 28, 442–451.CrossRefGoogle ScholarPubMed
Buist, G., Ridder, A. N. J. A., Kok, J. & Kuipers, O. P. (2006). Different subcellular locations of secretome components of Gram-positive bacteria. Microbiology-UK 152, 2867–2874.CrossRefGoogle ScholarPubMed
Clemons, W. M. Jr, Menetret, J.-F., Akey, C. W. & Rapoport, T. A. (2004). Structural insight into the protein translocation channel. Current Opinion in Structural Biology 14, 390–396.CrossRefGoogle ScholarPubMed
Dalbey, R. E. & Chen, M. (2004). Sec-translocase mediated membrane protein biogenesis. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 37–53.CrossRefGoogle ScholarPubMed
Desvaux, M., Parham, N. J., Scott-Tucker, A. & Henderson, I. R. (2004). The general secretory pathway: a general misnomer?Trends in Microbiology 12, 306–309.CrossRefGoogle ScholarPubMed
Ellgaard, L., Molinari, M. & Helenius, A. (1999). Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888.CrossRefGoogle ScholarPubMed
Hegde, R. S. & Bernstein, H. D. (2006). The surprising complexity of signal sequences. Trends in Biochemical Sciences 31, 563–571.CrossRefGoogle ScholarPubMed
Holland, I. B. (2004). Translocation of bacterial proteins – an overview. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 5–16.CrossRefGoogle ScholarPubMed
Lory, S. (1998). Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Current Opinion in Microbiology 1, 27–35.CrossRefGoogle ScholarPubMed
Luirink, J. & Sinning, I. (2004). SRP-mediated protein targeting: structure and function revisited. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 17–35.Google ScholarPubMed
Manting, E. H. & Driessen, A. J. M. (2000). Escherichia coli translocase: the unravelling of a molecular machine. Molecular Microbiology 37, 226–238.CrossRefGoogle ScholarPubMed
Nakatogawa, H., Murakami, A. & Ito, K. (2004). Control of SecA and SecM translation by protein secretion. Current Opinion in Microbiology 7, 145–150.CrossRefGoogle ScholarPubMed
Pohlschroeder, M., Gimenez, M. I. & Jarrell, K. F. (2005). Protein transport in Archaea: Sec and twin arginine translocation pathways. Current Opinion in Microbiology 8, 713–719.CrossRefGoogle Scholar
Pohlschroeder, M., Hartmann, E., Hand, N. J., Dilks, K. & Haddad, A. (2005). Diversity and evolution of protein translocation. Annual Review of Microbiology 59, 91–111.CrossRefGoogle Scholar
Shental-Bechor, D., Fleishman, S. J. & Ben-Tal, N. (2006). Has the code for protein translocation been broken?Trends in Biochemical Sciences 31, 192–196.CrossRefGoogle ScholarPubMed
Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S. & Dijl, J. M. (2000). Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews 64, 515–547.CrossRefGoogle ScholarPubMed
Tjalsma, H., Antelmann, H., Jongbloed, J. D. H., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J.-Y. F., Westers, H., Zanen, G., Quax, W. J., Kuipers, O. P., Bron, S., Hecker, M. & Dijl, J. M. (2004). Proteomics of protein secretion by Bacillus subtilis: separating the ‘secrets’ of the secretome. Microbiology and Molecular Biology Reviews 68, 207–233.CrossRefGoogle ScholarPubMed
Sluis, E. O. & Driessen, A. J. M. (2006). Stepwise evolution of the Sec machinery in Proteobacteria. Trends in Microbiology 14, 105–108.CrossRefGoogle ScholarPubMed
Wely, K. H. M., Swaving, J., Freudl, R. & Driessen, A. J. M. (2001). Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiology Reviews 25, 437–454.CrossRefGoogle ScholarPubMed
White, S. H. & Heijne, G. (2005). Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology 15, 378–386.CrossRefGoogle ScholarPubMed
Wild, K., Rosendal, K. R. & Sinning, I. (2004). A structural step into the SRP cycle. Molecular Microbiology 53, 357–363.CrossRefGoogle ScholarPubMed
Detmers, F. J. M., Lanfermeijer, F. C. & Poolman, B. (2001). Peptides and ATP binding cassette peptide transporters. Research in Microbiology 152, 245–258.CrossRefGoogle ScholarPubMed
Omori, K. & Idei, A. (2003). Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. Journal of Bioscience and Bioengineering 95, 1–12.CrossRefGoogle ScholarPubMed
Berks, B. C., Sargent, F. & Palmer, T. (2000). The Tat protein export pathway. Molecular Microbiology 35, 260–274.CrossRefGoogle ScholarPubMed
Berks, B. C., Palmer, T. & Sargent, F. (2003). The Tat protein translocation pathway and its role in microbial physiology. Advances in Microbial Physiology 47, 187–254.CrossRefGoogle ScholarPubMed
Berks, B. C., Palmer, T. & Sargent, F. (2005). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Current Opinion in Microbiology 8, 174–181.CrossRefGoogle ScholarPubMed
Bronstein, P., Marrichi, M. & DeLisa, M. P. (2004). Dissecting the twin-arginine translocation pathway using genome-wide analysis. Research in Microbiology 155, 803–810.CrossRefGoogle ScholarPubMed
Halic, M. & Beckmann, R. (2005). The signal recognition particle and its interactions during protein targeting. Current Opinion in Structural Biology 15, 116–125.CrossRefGoogle ScholarPubMed
Lee, P. A., Tullman-Ercek, D. & Georgiou, G. (2006). The bacterial twin-arginine translocation pathway. Annual Review of Microbiology 60, 373–395.CrossRefGoogle ScholarPubMed
Meloni, S., Rey, L., Sidler, S., Imperial, J., Ruiz-Argueso, T. & Palacios, J. M. (2003). The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Molecular Microbiology 48, 1195–1207.CrossRefGoogle ScholarPubMed
Muller, M. (2005). Twin-arginine-specific protein export in Escherichia coli. Research in Microbiology 156, 131–136.CrossRefGoogle ScholarPubMed
Palmer, T., Sargent, F. & Berks, B. C. (2005). Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends in Microbiology 13, 175–180.CrossRefGoogle ScholarPubMed
Robinson, C. & Bolhuis, A. (2001). Protein targeting by the twin-arginine translocation pathway. Nature Reviews Molecular Cell Biology 2, 350–356.CrossRefGoogle ScholarPubMed
Robinson, C. & Bolhuis, A. (2004). Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 135–147.CrossRefGoogle ScholarPubMed
Sargent, F., Berks, B. C. & Palmer, T. (2002). Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Archives of Microbiology 178, 77–84.CrossRefGoogle ScholarPubMed
Yen, M. R., Tseng, Y. H., Nguyen, E. H., Wu, L. F. & Saier, M. H. Jr. (2002). Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Archives of Microbiology 177, 441–450.CrossRefGoogle ScholarPubMed
Aizawa, S. (2001). Bacterial flagella and type III secretion systems. FEMS Microbiology Letters 202, 157–164.CrossRefGoogle ScholarPubMed
Burns, D. L. (2003). Type IV transporters of pathogenic bacteria. Current Opinion in Microbiology 6, 29–34.CrossRefGoogle ScholarPubMed
Buttner, D. & Bonas, U. (2002). Port of entry – the type III secretion translocon. Trends in Microbiology 10, 186–192.CrossRefGoogle ScholarPubMed
Cascales, E. & Christie, P. J. (2004). The versatile bacterial type IV secretion systems. Nature Review Microbiology 1, 137–149.CrossRefGoogle Scholar
Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual Review of Microbiology 59, 451–485.CrossRefGoogle ScholarPubMed
Cianciotto, N. P. (2005). Type II secretion: a protein secretion system for all seasons. Trends in Microbiology 13, 581–588.CrossRefGoogle ScholarPubMed
Coombes, B. K. & Finlay, B. B. (2005). Insertion of the bacterial type III translocon: not your average needle stick. Trends in Microbiology 13, 92–95.CrossRefGoogle ScholarPubMed
Cotter, S. E., Surana, N. K. & Geme, J. W. III (2005). Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends in Microbiology 13, 199–205.CrossRefGoogle ScholarPubMed
Gier, J. W. & Luirink, J. (2001). Biogenesis of inner membrane proteins in Escherichia coli. Molecular Microbiology 40, 314–322.CrossRefGoogle ScholarPubMed
Desvaux, M., Parham, N. J. & Henderson, I. R. (2004). The autotransporter secretion system. Research in Microbiology 155, 53–60.CrossRefGoogle ScholarPubMed
Facey, S. J. & Kuhn, A. (2004). Membrane integration of Escherichia coli model membrane proteins. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 55–66.CrossRefGoogle ScholarPubMed
Fekkes, P. & Driessen, A. J. M. (1999). Protein targeting to the bacterial cytoplasmic membrane. Microbiology and Molecular Biology Reviews 63, 161–173.Google ScholarPubMed
Filloux, A. (2004). The underlying mechanisms of type II protein secretion. Biochimica et Biophysica Acta – Molecular Cell Research 1694, 163–179.CrossRefGoogle ScholarPubMed
Frankel, G. (2002). Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Molecular Microbiology 45, 905–916.Google Scholar
Ghosh, P. (2004). Process of protein transport by the type III secretion system. Microbiology and Molecular Biology Reviews 68, 771–795.CrossRefGoogle ScholarPubMed
Girard, V. & Mourez, M. (2006). Adhesion mediated by autotransporters of Gram-negative bacteria: structural and functional features. Research in Microbiology 157, 407–416.CrossRefGoogle ScholarPubMed
Henderson, I. R., Cappello, R. & Nataro, J. P. (2000). Autotransporter proteins, evolution and redefining protein secretion. Trends in Microbiology 8, 529–532.CrossRefGoogle ScholarPubMed
Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. (2004). Type V protein secretion pathway: the autotransporter story. Microbiology and Molecular Biology Reviews 68, 692–744.CrossRefGoogle ScholarPubMed
Johnson, T. L., Abendroth, J., Hol, W. G. J. & Sandkvist, M. (2006).Type II secretion: from structure to function. FEMS Microbiology Letters 255, 175–186.CrossRefGoogle ScholarPubMed
Kim, D. S. H., Chao, Y. & Saier, M. H. Jr. (2006). Protein-translocating trimeric autotransporters of Gram-negative bacteria. Journal of Bacteriology 188, 5655–5667.CrossRefGoogle ScholarPubMed
Lammertyn, E. & Anne, J. (2004). Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiology Letters 238, 273–279.Google ScholarPubMed
Lawley, T. D., Klimke, W. A., Gubbins, M. J. & Frost, L. S. (2003). F factor conjugation is a true type IV secretion system. FEMS Microbiology Letters 224, 1–15.CrossRefGoogle ScholarPubMed
Linke, D., Riess, T., Autenrieth, I. B., Lupas, A. & Kempf, V. A. J. (2006). Trimeric autotransporter adhesins: variable structure, common function. Trends in Microbiology 14, 264–270.CrossRefGoogle ScholarPubMed
Luirink, J., Heijne, G., Houben, E. & Gier, J. W. (2006). Biogenesis of inner membrane proteins in Escherichi coli. Annual Review of Microbiology 59, 329–355.CrossRefGoogle Scholar
Macnab, R. M. (2003). How bacteria assemble flagella. Annual Review of Microbiology 57, 77–100.CrossRefGoogle ScholarPubMed
Mogensen, J. E. & Otzen, D. E. (2005). Interactions between folding factors and bacterial outer membrane proteins. Molecular Microbiology 57, 326–346.CrossRefGoogle ScholarPubMed
Page, A. L. & Parsot, C. (2002). Chaperones of the type III secretion pathway: jacks of all trades. Molecular Microbiology 46, 1–11.CrossRefGoogle ScholarPubMed
Parsot, C., Hamiaux, C. & Page, A. L. (2003). The various and varying roles of specific chaperones in type III secretion systems. Current Opinion in Microbiology 6, 7–14.CrossRefGoogle Scholar
Peabody, C. R., Chung, Y. J., Yen, M. R., Vidal-Ingigliardi, D., Pugsley, A. P. & Saier, M. H. Jr. (2003). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology-UK 149, 3051–3072.CrossRefGoogle ScholarPubMed
Plano, G. V., Day, J. B. & Ferracci, F. (2001). Type III export: new uses for an old pathway. Molecular Microbiology 40, 284–293.CrossRefGoogle ScholarPubMed
Russel, M. (1998). Macromolecular assembly and secretion across the bacterial cell envelope – type II protein secretion system. Journal of Molecular Biology 279, 485–499.CrossRefGoogle Scholar
Saier, M. H. Jr. (2004). Evolution of bacterial type III protein secretion systems. Trends in Microbiology 12, 113–115.CrossRefGoogle ScholarPubMed
Sandkvist, M. (2001). Biology of type II secretion. Molecular Microbiology 40, 271–283.CrossRefGoogle ScholarPubMed
Thanassi, D. G. & Hultgren, S. J. (2000). Multiple pathways allow protein secretion across the bacterial outer membrane. Current Opinion in Cell Biology 12, 420–430.CrossRefGoogle ScholarPubMed
Thomas, N. A. & Finlay, Brett B. (2003). Establishing order for type III secretion substrates – a hierarchical process. Trends in Microbiology 11, 398–403.CrossRefGoogle ScholarPubMed
Tokuda, H. & Matsuyama, S. (2004). Sorting of lipoproteins to the outer membrane in E. coli. Biochimica et Biophysica Acta – Molecular Cell Research 1693, 5–13.CrossRefGoogle ScholarPubMed
Ton-That, H. & Schneewind, O. (2004). Assembly of pili in Gram-positive bacteria. Trends in Microbiology 12, 228–234.CrossRefGoogle ScholarPubMed
Ulsen, P. & Tommassen, J. (2006). Protein secretion and secreted proteins in pathogenic Neisseriaceae. FEMS Microbiology Reviews 30, 292–319.CrossRefGoogle ScholarPubMed
Yip, C. K. & Strynadka, N. C. J. (2006). New structural insights into the bacterial type III secretion system. Trends in Biochemical Sciences 31, 223–230.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×