Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T21:01:37.143Z Has data issue: false hasContentIssue false

2 - Composition and structure of prokaryotic cells

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Like all organisms, microorganisms grow, metabolize and replicate utilizing materials available from the environment. Such materials include those chemical elements required for structural aspects of cellular composition and metabolic activities such as enzyme regulation and redox processes. To understand bacterial metabolism, it is therefore helpful to know the chemical composition of the cell and component structures. This chapter describes the elemental composition and structure of prokaryotic cells, and the kinds of nutrients needed for biosynthesis and energy-yielding metabolism.

Elemental composition

From over 100 natural elements, microbial cells generally only contain 12 in significant quantities. These are known as major elements, and are listed in Table 2.1 together with some of their major functions and predominant chemical forms used by microorganisms.

They include elements such as carbon (C), oxygen (O) and hydrogen (H) constituting organic compounds like carbohydrates. Nitrogen (N) is found in microbial cells in proteins, nucleic acids and coenzymes. Sulfur (S) is needed for S-containing amino acids such as methionine and cysteine and for various coenzymes. Phosphorus (P) is present in nucleic acids, phospholipids, teichoic acid and nucleotides including NAD(P) and ATP. Potassium is the major inorganic cation (K+), while chloride (Cl) is the major inorganic anion. K+ is required as a cofactor for certain enzymes, e.g. pyruvate kinase. Chloride is involved in the energy conservation process operated by halophilic archaea (Section 11.6). Sodium (Na+) participates in several transport and energy transduction processes, and plays a crucial role in microbial growth under alkaline conditions (Section 5.7.4).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beinert, H. (2000). A tribute to sulfur. European Journal of Biochemistry 267, 5657–5664.CrossRefGoogle Scholar
Dosanjh, N. S. & Michel, S. L. J. (2006). Microbial nickel metalloregulation: NikRs for nickel ions. Current Opinion in Chemical Biology 10, 123–130.CrossRefGoogle ScholarPubMed
Hille, R. (2002). Molybdenum and tungsten in biology. Trends in Biochemical Sciences 27, 360–367.CrossRefGoogle ScholarPubMed
Itoh, S. (2006). Mononuclear copper active-oxygen complexes. Current Opinion in Chemical Biology 10, 115–122.CrossRefGoogle ScholarPubMed
Jakubovics, N. S. & Jenkinson, H. F. (2001). Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology–UK 147, 1709–1718.CrossRefGoogle ScholarPubMed
Kobayashi, M. & Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry 261, 1–9.CrossRefGoogle ScholarPubMed
Maroney, M. J. (1999). Structure/function relationships in nickel metallobiochemistry. Current Opinion in Chemical Biology 3, 188–199.CrossRefGoogle ScholarPubMed
Stadtman, T. C. (2002). Discoveries of vitamin B12 and selenium enzymes. Annual Review of Biochemistry 71, 1–16.CrossRefGoogle ScholarPubMed
Beatson, S. A., Minamino, T. & Pallen, M. J. (2006). Variation in bacterial flagellins: from sequence to structure. Trends in Microbiology 14, 151–155.CrossRefGoogle ScholarPubMed
Berry, R. M. & Armitage, J. P. (1999). The bacterial flagella motor. Advances in Microbial Physiology 41, 291–337.CrossRefGoogle ScholarPubMed
Fraser, G. M. & Hughes, C. (1999). Swarming motility. Current Opinion in Microbiology 2, 630–635.CrossRefGoogle ScholarPubMed
He, S. Y. & Jin, Q. (2003). The Hrp pilus: learning from flagella. Current Opinion in Microbiology 6, 15–19.CrossRefGoogle ScholarPubMed
Kalkum, M., Eisenbrandt, R., Lurz, R. & Lanka, E. (2002). Tying rings for sex. Trends in Microbiology 10, 382–387.CrossRefGoogle Scholar
Pallen, M. J., Penn, C. W. & Chaudhuri, R. R. (2005). Bacterial flagellar diversity in the post-genomic era. Trends in Microbiology 13, 143–149.CrossRefGoogle ScholarPubMed
Scott, J. R. & Zahner, D. (2006). Pili with strong attachments: Gram-positive bacteria do it differently. Molecular Microbiology 62, 320–330.CrossRefGoogle ScholarPubMed
Desvaux, M., Dumas, E., Chafsey, I. & Hebraud, M. (2006). Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiology Letters 256, 1–15.CrossRefGoogle ScholarPubMed
Lasa, I. & Penades, J. R. (2006). Bap: a family of surface proteins involved in biofilm formation. Research in Microbiology 157, 99–107.CrossRefGoogle ScholarPubMed
Moens, S. & Vanderleyden, J. (1997). Glycoproteins in prokaryotes. Archives of Microbiology 168, 169–175.CrossRefGoogle ScholarPubMed
Navarre, W. W. & Schneewind, O. (1999). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews 63, 174–229.Google ScholarPubMed
Ron, E. & Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology 13, 249–252.CrossRefGoogle ScholarPubMed
Sara, M. (2001). Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria? Trends in Microbiology 9, 47–49.CrossRefGoogle ScholarPubMed
Sleytr, U. B. & Beveridge, T. J. (1999). Bacterial S-layers. Trends in Microbiology 7, 253–260.CrossRefGoogle ScholarPubMed
Achouak, W., Heulin, T. & Pages, J. M. (2001). Multiple facets of bacterial porins. FEMS Microbiology Letters 199, 1–7.CrossRefGoogle ScholarPubMed
Begley, M., Gahan, C. G. M. & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews 29, 625–651.CrossRefGoogle ScholarPubMed
Bitter, W. (2003). Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Archives of Microbiology 179, 307–314.CrossRefGoogle ScholarPubMed
Chatterjee, S. N. & Chaudhuri, K. (2003). Lipopolysaccharides of Vibrio cholerae: I. Physical and chemical characterization. Biochimica et Biophysica Acta – Molecular Basis of Disease 1639, 65–79.CrossRefGoogle ScholarPubMed
Cullen, P. A., Haake, D. A. & Adler, B. (2004). Outer membrane proteins of pathogenic spirochetes. FEMS Microbiology Reviews 28, 291–318.CrossRefGoogle ScholarPubMed
Helander, I. M., Haikara, A., Sadovskaya, I., Vinogradov, E. & Salkinoja-Salonen, M. S. (2004). Lipopolysaccharides of anaerobic beer spoilage bacteria of the genus Pectinatus – lipopolysaccharides of a Gram-positive genus. FEMS Microbiology Reviews 28, 543–552.CrossRefGoogle ScholarPubMed
Koebnik, R., Locher, K. P. & Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology 37, 239–253.CrossRefGoogle Scholar
Lloubes, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A. & Journet, L. (2001). The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Research in Microbiology 152, 523–529.CrossRefGoogle ScholarPubMed
Mogensen, J. E. & Otzen, D. E. (2005). Interactions between folding factors and bacterial outer membrane proteins. Molecular Microbiology 57, 326–346.CrossRefGoogle ScholarPubMed
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews 67, 593–656.CrossRefGoogle ScholarPubMed
Schulz, G. E. (2002). The structure of bacterial outer membrane proteins. Biochimica et Biophysica Acta – Biomembranes 1565, 308–317.CrossRefGoogle ScholarPubMed
Beveridge, T. J. (1999). Structures of Gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology 181, 4725–4733.Google ScholarPubMed
Bhavsar, A. P. & Brown, E. D. (2006). Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Molecular Microbiology 60, 1077–1090.CrossRefGoogle ScholarPubMed
Cabeen, M. T. & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601–610.CrossRefGoogle ScholarPubMed
Dmitriev, B., Toukach, F. & Ehlers, S. (2005). Towards a comprehensive view of the bacterial cell wall. Trends in Microbiology 13, 569–574.CrossRefGoogle ScholarPubMed
Hatch, T. P. (1996). Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? Journal of Bacteriology 178, 1–5.CrossRefGoogle ScholarPubMed
Keep, N. H., Ward, J. M., Cohen-Gonsaud, M. & Henderson, B. (2006). Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends in Microbiology 14, 271–276.CrossRefGoogle ScholarPubMed
Koch, A. L. (1998). Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. Research in Microbiology 149, 689–701.CrossRefGoogle ScholarPubMed
Koch, A. L. (2002). Why are rod-shaped bacteria rod shaped? Trends in Microbiology 10, 452–455.CrossRefGoogle ScholarPubMed
McCoy, A. J. & Maurelli, A. T. (2006). Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends in Microbiology 14, 70–77.CrossRefGoogle ScholarPubMed
Neuhaus, F. C. & Baddiley, J. (2003). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiology and Molecular Biology Reviews 67, 686–723.CrossRefGoogle ScholarPubMed
Schaffer, C. & Messner, P. (2005). The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology–UK 151, 643–651.CrossRefGoogle ScholarPubMed
Smith, T. J., Blackman, S. A. & Foster, S. J. (2000). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology–UK 146, 249–262.CrossRefGoogle ScholarPubMed
Bohin, J. P. (2000). Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiology Letters 186, 11–19.CrossRefGoogle ScholarPubMed
Koch, A. L. (1998). The biophysics of the Gram-negative periplasmic space. Critical Reviews in Microbiology 24, 23–59.CrossRefGoogle ScholarPubMed
Bernstein, H. D. (2000). The biogenesis and assembly of bacterial membrane proteins. Current Opinion in Microbiology 3, 203–209.CrossRefGoogle ScholarPubMed
Cronan, J. E. (2006). A bacterium that has three pathways to regulate membrane lipid fluidity. Molecular Microbiology 60, 256–259.CrossRefGoogle ScholarPubMed
Driessen, A. J. M., Vandevossenberg, J. L. C. M. & Konings, W. N. (1996). Membrane composition and ion-permeability in extremophiles. FEMS Microbiology Reviews 18, 139–148.CrossRefGoogle Scholar
Edwards, M. D., Booth, I. R. & Miller, S. (2004). Gating the bacterial mechanosensitive channels: MscS a new paradigm? Current Opinion in Microbiology 7, 163–167.CrossRefGoogle ScholarPubMed
Engelman, D. M. (2005). Membranes are more mosaic than fluid. Nature 438, 578–580.CrossRefGoogle ScholarPubMed
Fleming, K. G. (2000). Riding the wave: structural and energetic principles of helical membrane proteins. Current Opinion in Biotechnology 11, 67–71.CrossRefGoogle ScholarPubMed
Flores, E., Herrero, A., Wolk, C. P. & Maldener, I. (2006). Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends in Microbiology 14, 439–443.CrossRefGoogle ScholarPubMed
Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E. & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology 15, 423–431.CrossRefGoogle ScholarPubMed
Hanford, M. J. & Peeples, T. L. (2002). Archaeal tetraether lipids: unique structures and applications. Applied Biochemistry and Biotechnology 97, 45–62.CrossRefGoogle ScholarPubMed
Hedfalk, K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P. & Neutze, R. (2006). Aquaporin gating. Current Opinion in Structural Biology 16, 447–456.CrossRefGoogle ScholarPubMed
Kung, C. & Blount, P. (2004). Channels in microbes: so many holes to fill. Molecular Microbiology 53, 373–380.CrossRefGoogle Scholar
Mansilla, M. C., Cybulski, L. E., Albanesi, D. & Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology 186, 6681–6688.CrossRefGoogle ScholarPubMed
Martinac, B. (2001). Mechanosensitive channels in prokaryotes. Cellular Physiology and Biochemistry 11, 61–76.CrossRefGoogle ScholarPubMed
Matsumoto, K., Kusaka, J., Nishibori, A. & Hara, H. (2006). Lipid domains in bacterial membranes. Molecular Microbiology 61, 1110–1117.CrossRefGoogle ScholarPubMed
Olsen, I. & Jantzen, E. (2001). Sphingolipids in bacteria and fungi. Anaerobe 7, 103–112.CrossRefGoogle Scholar
Pivetti, C. D., Yen, M. R., Miller, S., Busch, W., Tseng, Y. H., Booth, I. R. & Saier, M. H. Jr. (2003). Two families of mechanosensitive channel proteins. Microbiology and Molecular Biology Reviews 67, 66–85.CrossRefGoogle ScholarPubMed
Porat, A., Cho, S. H. & Beckwith, J. (2004). The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Research in Microbiology 155, 617–622.CrossRefGoogle ScholarPubMed
Sajbidor, J. (1997). Effect of some environmental factors on the content and composition of microbial membrane lipids. Critical Reviews in Biotechnology 17, 87–103.CrossRefGoogle ScholarPubMed
Boccard, F., Esnault, E. & Valens, M. (2005). Spatial arrangement and macrodomain organization of bacterial chromosomes. Molecular Microbiology 57, 9–16.CrossRefGoogle ScholarPubMed
Candela, T. & Fouet, A. (2006). Poly-gamma-glutamate in bacteria. Molecular Microbiology 60, 1091–1098.CrossRefGoogle ScholarPubMed
Dame, R. T. (2005). The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Molecular Microbiology 56, 858–870.CrossRefGoogle ScholarPubMed
Dennis, P. P., Omer, A. & Lowe, T. (2001). A guided tour: small RNA function in Archaea. Molecular Microbiology 40, 509–519.CrossRefGoogle ScholarPubMed
Docampo, R., Souza, W., Miranda, K., Rohloff, P. & Moreno, S. N. J. (2005). Acidocalcisome – conserved from bacteria to man. Nature Reviews Microbiology 3, 251–261.CrossRefGoogle Scholar
Frankel, R. B. & Bazylinski, D. A. (2006). How magnetotactic bacteria make magnetosomes queue up. Trends in Microbiology 14, 329–331.CrossRefGoogle ScholarPubMed
Graumann, P. L. (2004). Cytoskeletal elements in bacteria. Current Opinion in Microbiology 7, 565–571.CrossRefGoogle ScholarPubMed
Janakiraman, A. & Goldberg, M. B. (2004). Recent advances on the development of bacterial poles. Trends in Microbiology 12, 518–525.CrossRefGoogle ScholarPubMed
Lowe, J., Ent, F. & Amos, L. A. (2004). Molecules of the bacterial cytoskeleton. Annual Review of Biophysics and Biomolecular Structure 33, 177–198.CrossRefGoogle ScholarPubMed
Lybarger, S. R. & Maddock, J. R. (2001). Polarity in action: asymmetric protein localization in bacteria. Journal of Bacteriology 183, 3261–3267.CrossRefGoogle ScholarPubMed
Mathews, C. K. (1993). The cell – bag of enzymes or network of channels? Journal of Bacteriology 175, 6377–6381.CrossRefGoogle ScholarPubMed
Noirot, P. & Noirot-Gros, M. F. (2004). Protein interaction networks in bacteria. Current Opinion in Microbiology 7, 505–512.CrossRefGoogle ScholarPubMed
Shih, Y. L. & Rothfield, L. (2006). The bacterial cytoskeleton. Microbiology and Molecular Biology Reviews 70, 729–754.CrossRefGoogle ScholarPubMed
Sleator, R. D. & Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26, 49–71.CrossRefGoogle ScholarPubMed
Spitzer, J. J. & Poolman, B. (2005). Electrochemical structure of the crowded cytoplasm. Trends in Biochemical Sciences 30, 536–541.CrossRefGoogle ScholarPubMed
Bobik, T. (2006). Polyhedral organelles compartmenting bacterial metabolic processes. Applied Microbiology and Biotechnology 70, 517–525.CrossRefGoogle ScholarPubMed
Bohm, A. & Boos, W. (2004). Gene regulation in prokaryotes by subcellular relocalization of transcription factors. Current Opinion in Microbiology 7, 151–156.CrossRefGoogle ScholarPubMed
Bravo, A., Serrano-Heras, G. & Salas, M. (2005). Compartmentalization of prokaryotic DNA replication. FEMS Microbiology Letters 29, 25–47.CrossRefGoogle ScholarPubMed
Cannon, G. C., Bradburne, C. E., Aldrich, H. C., Baker, S. H., Heinhorst, S. & Shively, J. M. (2001). Microcompartments in prokaryotes: carboxysomes and related polyhedra. Applied and Environmental Microbiology 67, 5351–5361.CrossRefGoogle ScholarPubMed
Lewis, P. J. (2004). Bacterial subcellular architecture: recent advances and future prospects. Molecular Microbiology 54, 1135–1150.CrossRefGoogle ScholarPubMed
Driks, A. (1999). Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews 63, 1–20.Google ScholarPubMed
Beinert, H. (2000). A tribute to sulfur. European Journal of Biochemistry 267, 5657–5664.CrossRefGoogle Scholar
Dosanjh, N. S. & Michel, S. L. J. (2006). Microbial nickel metalloregulation: NikRs for nickel ions. Current Opinion in Chemical Biology 10, 123–130.CrossRefGoogle ScholarPubMed
Hille, R. (2002). Molybdenum and tungsten in biology. Trends in Biochemical Sciences 27, 360–367.CrossRefGoogle ScholarPubMed
Itoh, S. (2006). Mononuclear copper active-oxygen complexes. Current Opinion in Chemical Biology 10, 115–122.CrossRefGoogle ScholarPubMed
Jakubovics, N. S. & Jenkinson, H. F. (2001). Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology–UK 147, 1709–1718.CrossRefGoogle ScholarPubMed
Kobayashi, M. & Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry 261, 1–9.CrossRefGoogle ScholarPubMed
Maroney, M. J. (1999). Structure/function relationships in nickel metallobiochemistry. Current Opinion in Chemical Biology 3, 188–199.CrossRefGoogle ScholarPubMed
Stadtman, T. C. (2002). Discoveries of vitamin B12 and selenium enzymes. Annual Review of Biochemistry 71, 1–16.CrossRefGoogle ScholarPubMed
Beatson, S. A., Minamino, T. & Pallen, M. J. (2006). Variation in bacterial flagellins: from sequence to structure. Trends in Microbiology 14, 151–155.CrossRefGoogle ScholarPubMed
Berry, R. M. & Armitage, J. P. (1999). The bacterial flagella motor. Advances in Microbial Physiology 41, 291–337.CrossRefGoogle ScholarPubMed
Fraser, G. M. & Hughes, C. (1999). Swarming motility. Current Opinion in Microbiology 2, 630–635.CrossRefGoogle ScholarPubMed
He, S. Y. & Jin, Q. (2003). The Hrp pilus: learning from flagella. Current Opinion in Microbiology 6, 15–19.CrossRefGoogle ScholarPubMed
Kalkum, M., Eisenbrandt, R., Lurz, R. & Lanka, E. (2002). Tying rings for sex. Trends in Microbiology 10, 382–387.CrossRefGoogle Scholar
Pallen, M. J., Penn, C. W. & Chaudhuri, R. R. (2005). Bacterial flagellar diversity in the post-genomic era. Trends in Microbiology 13, 143–149.CrossRefGoogle ScholarPubMed
Scott, J. R. & Zahner, D. (2006). Pili with strong attachments: Gram-positive bacteria do it differently. Molecular Microbiology 62, 320–330.CrossRefGoogle ScholarPubMed
Desvaux, M., Dumas, E., Chafsey, I. & Hebraud, M. (2006). Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiology Letters 256, 1–15.CrossRefGoogle ScholarPubMed
Lasa, I. & Penades, J. R. (2006). Bap: a family of surface proteins involved in biofilm formation. Research in Microbiology 157, 99–107.CrossRefGoogle ScholarPubMed
Moens, S. & Vanderleyden, J. (1997). Glycoproteins in prokaryotes. Archives of Microbiology 168, 169–175.CrossRefGoogle ScholarPubMed
Navarre, W. W. & Schneewind, O. (1999). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews 63, 174–229.Google ScholarPubMed
Ron, E. & Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology 13, 249–252.CrossRefGoogle ScholarPubMed
Sara, M. (2001). Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria? Trends in Microbiology 9, 47–49.CrossRefGoogle ScholarPubMed
Sleytr, U. B. & Beveridge, T. J. (1999). Bacterial S-layers. Trends in Microbiology 7, 253–260.CrossRefGoogle ScholarPubMed
Achouak, W., Heulin, T. & Pages, J. M. (2001). Multiple facets of bacterial porins. FEMS Microbiology Letters 199, 1–7.CrossRefGoogle ScholarPubMed
Begley, M., Gahan, C. G. M. & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews 29, 625–651.CrossRefGoogle ScholarPubMed
Bitter, W. (2003). Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Archives of Microbiology 179, 307–314.CrossRefGoogle ScholarPubMed
Chatterjee, S. N. & Chaudhuri, K. (2003). Lipopolysaccharides of Vibrio cholerae: I. Physical and chemical characterization. Biochimica et Biophysica Acta – Molecular Basis of Disease 1639, 65–79.CrossRefGoogle ScholarPubMed
Cullen, P. A., Haake, D. A. & Adler, B. (2004). Outer membrane proteins of pathogenic spirochetes. FEMS Microbiology Reviews 28, 291–318.CrossRefGoogle ScholarPubMed
Helander, I. M., Haikara, A., Sadovskaya, I., Vinogradov, E. & Salkinoja-Salonen, M. S. (2004). Lipopolysaccharides of anaerobic beer spoilage bacteria of the genus Pectinatus – lipopolysaccharides of a Gram-positive genus. FEMS Microbiology Reviews 28, 543–552.CrossRefGoogle ScholarPubMed
Koebnik, R., Locher, K. P. & Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology 37, 239–253.CrossRefGoogle Scholar
Lloubes, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A. & Journet, L. (2001). The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Research in Microbiology 152, 523–529.CrossRefGoogle ScholarPubMed
Mogensen, J. E. & Otzen, D. E. (2005). Interactions between folding factors and bacterial outer membrane proteins. Molecular Microbiology 57, 326–346.CrossRefGoogle ScholarPubMed
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews 67, 593–656.CrossRefGoogle ScholarPubMed
Schulz, G. E. (2002). The structure of bacterial outer membrane proteins. Biochimica et Biophysica Acta – Biomembranes 1565, 308–317.CrossRefGoogle ScholarPubMed
Beveridge, T. J. (1999). Structures of Gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology 181, 4725–4733.Google ScholarPubMed
Bhavsar, A. P. & Brown, E. D. (2006). Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Molecular Microbiology 60, 1077–1090.CrossRefGoogle ScholarPubMed
Cabeen, M. T. & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601–610.CrossRefGoogle ScholarPubMed
Dmitriev, B., Toukach, F. & Ehlers, S. (2005). Towards a comprehensive view of the bacterial cell wall. Trends in Microbiology 13, 569–574.CrossRefGoogle ScholarPubMed
Hatch, T. P. (1996). Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? Journal of Bacteriology 178, 1–5.CrossRefGoogle ScholarPubMed
Keep, N. H., Ward, J. M., Cohen-Gonsaud, M. & Henderson, B. (2006). Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends in Microbiology 14, 271–276.CrossRefGoogle ScholarPubMed
Koch, A. L. (1998). Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. Research in Microbiology 149, 689–701.CrossRefGoogle ScholarPubMed
Koch, A. L. (2002). Why are rod-shaped bacteria rod shaped? Trends in Microbiology 10, 452–455.CrossRefGoogle ScholarPubMed
McCoy, A. J. & Maurelli, A. T. (2006). Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends in Microbiology 14, 70–77.CrossRefGoogle ScholarPubMed
Neuhaus, F. C. & Baddiley, J. (2003). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiology and Molecular Biology Reviews 67, 686–723.CrossRefGoogle ScholarPubMed
Schaffer, C. & Messner, P. (2005). The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology–UK 151, 643–651.CrossRefGoogle ScholarPubMed
Smith, T. J., Blackman, S. A. & Foster, S. J. (2000). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology–UK 146, 249–262.CrossRefGoogle ScholarPubMed
Bohin, J. P. (2000). Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiology Letters 186, 11–19.CrossRefGoogle ScholarPubMed
Koch, A. L. (1998). The biophysics of the Gram-negative periplasmic space. Critical Reviews in Microbiology 24, 23–59.CrossRefGoogle ScholarPubMed
Bernstein, H. D. (2000). The biogenesis and assembly of bacterial membrane proteins. Current Opinion in Microbiology 3, 203–209.CrossRefGoogle ScholarPubMed
Cronan, J. E. (2006). A bacterium that has three pathways to regulate membrane lipid fluidity. Molecular Microbiology 60, 256–259.CrossRefGoogle ScholarPubMed
Driessen, A. J. M., Vandevossenberg, J. L. C. M. & Konings, W. N. (1996). Membrane composition and ion-permeability in extremophiles. FEMS Microbiology Reviews 18, 139–148.CrossRefGoogle Scholar
Edwards, M. D., Booth, I. R. & Miller, S. (2004). Gating the bacterial mechanosensitive channels: MscS a new paradigm? Current Opinion in Microbiology 7, 163–167.CrossRefGoogle ScholarPubMed
Engelman, D. M. (2005). Membranes are more mosaic than fluid. Nature 438, 578–580.CrossRefGoogle ScholarPubMed
Fleming, K. G. (2000). Riding the wave: structural and energetic principles of helical membrane proteins. Current Opinion in Biotechnology 11, 67–71.CrossRefGoogle ScholarPubMed
Flores, E., Herrero, A., Wolk, C. P. & Maldener, I. (2006). Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends in Microbiology 14, 439–443.CrossRefGoogle ScholarPubMed
Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E. & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology 15, 423–431.CrossRefGoogle ScholarPubMed
Hanford, M. J. & Peeples, T. L. (2002). Archaeal tetraether lipids: unique structures and applications. Applied Biochemistry and Biotechnology 97, 45–62.CrossRefGoogle ScholarPubMed
Hedfalk, K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P. & Neutze, R. (2006). Aquaporin gating. Current Opinion in Structural Biology 16, 447–456.CrossRefGoogle ScholarPubMed
Kung, C. & Blount, P. (2004). Channels in microbes: so many holes to fill. Molecular Microbiology 53, 373–380.CrossRefGoogle Scholar
Mansilla, M. C., Cybulski, L. E., Albanesi, D. & Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology 186, 6681–6688.CrossRefGoogle ScholarPubMed
Martinac, B. (2001). Mechanosensitive channels in prokaryotes. Cellular Physiology and Biochemistry 11, 61–76.CrossRefGoogle ScholarPubMed
Matsumoto, K., Kusaka, J., Nishibori, A. & Hara, H. (2006). Lipid domains in bacterial membranes. Molecular Microbiology 61, 1110–1117.CrossRefGoogle ScholarPubMed
Olsen, I. & Jantzen, E. (2001). Sphingolipids in bacteria and fungi. Anaerobe 7, 103–112.CrossRefGoogle Scholar
Pivetti, C. D., Yen, M. R., Miller, S., Busch, W., Tseng, Y. H., Booth, I. R. & Saier, M. H. Jr. (2003). Two families of mechanosensitive channel proteins. Microbiology and Molecular Biology Reviews 67, 66–85.CrossRefGoogle ScholarPubMed
Porat, A., Cho, S. H. & Beckwith, J. (2004). The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Research in Microbiology 155, 617–622.CrossRefGoogle ScholarPubMed
Sajbidor, J. (1997). Effect of some environmental factors on the content and composition of microbial membrane lipids. Critical Reviews in Biotechnology 17, 87–103.CrossRefGoogle ScholarPubMed
Boccard, F., Esnault, E. & Valens, M. (2005). Spatial arrangement and macrodomain organization of bacterial chromosomes. Molecular Microbiology 57, 9–16.CrossRefGoogle ScholarPubMed
Candela, T. & Fouet, A. (2006). Poly-gamma-glutamate in bacteria. Molecular Microbiology 60, 1091–1098.CrossRefGoogle ScholarPubMed
Dame, R. T. (2005). The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Molecular Microbiology 56, 858–870.CrossRefGoogle ScholarPubMed
Dennis, P. P., Omer, A. & Lowe, T. (2001). A guided tour: small RNA function in Archaea. Molecular Microbiology 40, 509–519.CrossRefGoogle ScholarPubMed
Docampo, R., Souza, W., Miranda, K., Rohloff, P. & Moreno, S. N. J. (2005). Acidocalcisome – conserved from bacteria to man. Nature Reviews Microbiology 3, 251–261.CrossRefGoogle Scholar
Frankel, R. B. & Bazylinski, D. A. (2006). How magnetotactic bacteria make magnetosomes queue up. Trends in Microbiology 14, 329–331.CrossRefGoogle ScholarPubMed
Graumann, P. L. (2004). Cytoskeletal elements in bacteria. Current Opinion in Microbiology 7, 565–571.CrossRefGoogle ScholarPubMed
Janakiraman, A. & Goldberg, M. B. (2004). Recent advances on the development of bacterial poles. Trends in Microbiology 12, 518–525.CrossRefGoogle ScholarPubMed
Lowe, J., Ent, F. & Amos, L. A. (2004). Molecules of the bacterial cytoskeleton. Annual Review of Biophysics and Biomolecular Structure 33, 177–198.CrossRefGoogle ScholarPubMed
Lybarger, S. R. & Maddock, J. R. (2001). Polarity in action: asymmetric protein localization in bacteria. Journal of Bacteriology 183, 3261–3267.CrossRefGoogle ScholarPubMed
Mathews, C. K. (1993). The cell – bag of enzymes or network of channels? Journal of Bacteriology 175, 6377–6381.CrossRefGoogle ScholarPubMed
Noirot, P. & Noirot-Gros, M. F. (2004). Protein interaction networks in bacteria. Current Opinion in Microbiology 7, 505–512.CrossRefGoogle ScholarPubMed
Shih, Y. L. & Rothfield, L. (2006). The bacterial cytoskeleton. Microbiology and Molecular Biology Reviews 70, 729–754.CrossRefGoogle ScholarPubMed
Sleator, R. D. & Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26, 49–71.CrossRefGoogle ScholarPubMed
Spitzer, J. J. & Poolman, B. (2005). Electrochemical structure of the crowded cytoplasm. Trends in Biochemical Sciences 30, 536–541.CrossRefGoogle ScholarPubMed
Bobik, T. (2006). Polyhedral organelles compartmenting bacterial metabolic processes. Applied Microbiology and Biotechnology 70, 517–525.CrossRefGoogle ScholarPubMed
Bohm, A. & Boos, W. (2004). Gene regulation in prokaryotes by subcellular relocalization of transcription factors. Current Opinion in Microbiology 7, 151–156.CrossRefGoogle ScholarPubMed
Bravo, A., Serrano-Heras, G. & Salas, M. (2005). Compartmentalization of prokaryotic DNA replication. FEMS Microbiology Letters 29, 25–47.CrossRefGoogle ScholarPubMed
Cannon, G. C., Bradburne, C. E., Aldrich, H. C., Baker, S. H., Heinhorst, S. & Shively, J. M. (2001). Microcompartments in prokaryotes: carboxysomes and related polyhedra. Applied and Environmental Microbiology 67, 5351–5361.CrossRefGoogle ScholarPubMed
Lewis, P. J. (2004). Bacterial subcellular architecture: recent advances and future prospects. Molecular Microbiology 54, 1135–1150.CrossRefGoogle ScholarPubMed
Driks, A. (1999). Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews 63, 1–20.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×