Skip to main content Accessibility help
×
Home
  • Print publication year: 2006
  • Online publication date: August 2009

3 - Quorum-sensing-mediated regulation of plant–bacteria interactions and Agrobacterium tumefaciens virulence

Summary

INTRODUCTION

Plant-associated bacteria have a wide range of interactions with their hosts, from non-specific associations to more dedicated symbiotic or pathogenic interactions. Many complex interactions take place between plant roots and associated bacteria, fungi, and protozoa in a highly diverse and dense community within the rhizosphere. Bacterial cell-to-cell communication systems in this ecological niche appear to affect biofilm formation, pathogenesis, and production of siderophores and antibiotics. These activities are no doubt important in root colonization as well as in symbiosis and pathogenesis. Exciting developments and current studies in understanding the many complex interactions in the rhizosphere include both the characterization of the microbial communities involved and the responses of the plant hosts to these communities. Cell-to-cell signaling between members of the community is no doubt critical for these interactions to sense population densities and diffusion barriers in the rhizosphere. Such studies are beyond the scope of this chapter, but we refer the reader to recent reviews of this field (43, 65, 82).

Perhaps the best-characterized group of soil bacteria that serves as the model for understanding plant–bacteria associations is the Rhizobiaceae. This family, in the alpha subgroup of the Proteobacteria, includes members of the genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium, and Bradyrhizobium (collectively referred to here as rhizobia), which form symbiotic relationships with host plants, and several pathogenic species of the genus Agrobacterium (including A. tumefaciens, A. rhizogenes, A. vitis, and A. rubi, here referred to as agrobacteria).

Related content

Powered by UNSILO
References
Alt-Morbe, J., Stryker, J. L., Fuqua, C.et al. 1996. The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J. Bacteriol. 178: 4248–57.
Beck von Bodman, S., Hayman, G. T. and Farrand, S. K. 1992. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc. Natn. Acad. Sci. USA 89: 643–7.
Beck von Bodman, S., McCutchan, J. E. and Farrand, S. K. 1989. Characterization of conjugal transfer functions of Agrobacterium tumefaciens Ti plasmid pTiC58. J. Bacteriol. 171: 5281–9.
Benoff, B., Yang, H., Lawson, C. L.et al. 2002. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 297: 1562–6.
Busby, S. and Ebright, R. H. 1999. Transcription activation by catabolite activator protein (CAP). J. Molec. Biol. 293: 199–213.
Chai, Y. and Winans, S. C. 2004. Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Molec. Microbiol. 51: 765–76.
Chai, Y., Zhu, J. and Winans, S. C. 2001. TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Molec. Microbiol. 40: 414–21.
Chen, G., Malenkos, J. W., Cha, M. R., Fuqua, C. and Chen, L. 2004. Quorum-sensing antiactivator TraM forms a dimer that dissociates to inhibit TraR. Molec. Microbiol. 52: 1641–51.
Cho, K., Fuqua, C., Martin, B. S. and Winans, S. C. 1996. Identification of Agrobacterium tumefaciens genes that direct the complete catabolism of octopine. J. Bacteriol. 178: 1872–80.
Cho, K., Fuqua, C. and Winans, S. C. 1997. Transcriptional regulation and locations of Agrobacterium tumefaciens genes required for complete catabolism of octopine. J. Bacteriol. 179: 1–8.
Cho, K. and Winans, S. C. 1993. Altered-function mutations in the Agrobacterium tumefaciens OccR protein and in an OccR-regulated promoter. J. Bacteriol. 175: 7715–19.
Cho, K. and Winans, S. C. 1996. The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated. Molec. Microbiol. 22: 1025–33.
Choi, S. H. and Greenberg, E. P. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natn. Acad. Sci. USA 88: 11115–19.
Choi, S. H. and Greenberg, E. P. 1992. Genetic evidence for multimerization of LuxR, the transcriptional activator of Vibrio fischeri luminescence. Molec. Mar. Biol. Biotechnol. 1: 408–13.
Clare, B. G., Kerr, A. and Jones, D. A. 1990. Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23: 126–37.
Dessaux, Y., A. Petit, S. K. Farrand and P. J. Murphy 1998. Opines and opine-like molecules involved in plant/Rhizobiaceae interactions. In Spaink, H. P., Kondorosi, A. and Hooykaas, P. J. (eds), The Rhizobiaceae, pp. 173–97. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Dessaux, Y., A. Petit and J. Tempe 1992. Opines in Agrobacterium biology. In Verma, D. P. S. (ed.), Molecular Signals in Plant-Microbe Communications, pp. 109–36. Ann Arbor, MI: CRC Press.
Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L. and Zhang, L. H. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68: 1754–9.
Dong, Y. H., Wang, L. H., Xu, J. L.et al. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813–17.
Dyson, H. J. and Wright, P. E. 2002. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12: 54–60.
Eberhard, A., Burlingame, A. L., Eberhard, C.et al. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20: 2444–9.
Egland, K. A. and Greenberg, E. P. 2001. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol. 183: 382–6.
Ellis, J. G., Kerr, A., Petit, A. and Tempe, J. 1982. Conjugal transfer of nopaline and agropine Ti-plasmids: the role of agrocinopines. Molec. Gen. Genet. 186: 269–73.
Farrand, S. K. 1998. Conjugal plasmids and their transfer. In Spaink, H. P., Kondorosi, A. and Hooykaas, P. J. J. (eds), The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria, pp. 199–233. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Finney, A. H., Blick, R. J., Murakami, K., Ishihama, A. and Stevens, A. M. 2002. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J. Bacteriol. 184: 4520–8.
Fuqua, C., Burbea, M. and Winans, S. C. 1995. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J. Bacteriol. 177: 1367–73.
Fuqua, C. and Winans, S. C. 1996. Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J. Bacteriol. 178: 435–40.
Fuqua, C. and Winans, S. C. 1996. Localization of OccR-activated and TraR-activated promoters that express two ABC-type permeases and the traR gene of Ti plasmid pTiR10. Molec. Microbiol. 20: 1199–210.
Fuqua, W. C. and Winans, S. C. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176: 2796–806.
Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Molec. Biol. Rev. 68: 280–300.
Genetello, C., Larebeke, N., Holsters, M.et al. 1977. Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265: 561–3.
Goodner, B., Hinkle, G., Gattung, S.et al. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323–8.
Gould, T. A., Schweizer, H. P. and Churchill, M. E. 2004. Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Molec. Microbiol. 53: 1135–46.
Hayman, G. T. and Farrand, S. K. 1990. Agrobacterium plasmids encode structurally and functionally different loci for catabolism of agrocinopine-type opines. Molec. Gen. Genet. 223: 465–73.
Hayman, G. T. and Farrand, S. K. 1988. Characterization and mapping of the agrocinopine-agrocin 84 locus on the nopaline Ti plasmid pTiC58. J. Bacteriol. 170: 1759–67.
He, X., Chang, W., Pierce, D. L., Seib, L. O., Wagner, J. and Fuqua, C. 2003. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J. Bacteriol. 185: 809–22.
Huang, J. J., Han, J. I., Zhang, L. H. and Leadbetter, J. R. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69: 5941–9.
Hwang, I., Cook, D. M. and Farrand, S. K. 1995. A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J. Bacteriol. 177: 449–58.
Hwang, I., Li, P. L., Zhang, L.et al. 1994. TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc. Natn. Acad. Sci. USA 91: 4639–43.
Hwang, I., Smyth, A. J., Luo, Z. Q. and Farrand, S. K. 1999. Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Molec. Microbiol. 34: 282–94.
Johnson, D. C., Ishihama, A. and Stevens, A. M. 2003. Involvement of region 4 of the sigma 70 subunit of RNA polymerase in transcriptional activation of the lux operon during quorum sensing. FEMS Microbiol. Lett. 228: 193–201.
Kado, C. I. 1994. Promiscuous DNA transfer system of Agrobacterium tumefaciens: role of the virB operon in sex pilus assembly and synthesis. Molec. Microbiol. 12: 17–22.
Kent, A. D. and Triplett, E. W. 2002. Microbial communities and their interactions in soil and rhizosphere ecosystems. A. Rev. Microbiol. 56: 211–36.
Kerr, A. 1971. Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol. Plant Pathol. 1: 241–6.
Kerr, A. 1969. Transfer of virulence between isolates of Agrobacterium. Nature 223: 1175–6.
Kerr, A., Manigault, P. and Tempe, J. 1977. Transfer of virulence in vivo and in vitro in Agrobacterium. Nature 265: 560–1.
Leadbetter, J. R. and Greenberg, E. P. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921–6.
Lessl, M., Balzer, D., Pansegrau, W. and Lanka, E. 1992. Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J. Biol. Chem. 267: 20471–80.
Lessl, M. and Lanka, E. 1994. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77: 321–4.
Luo, Z. Q. and Farrand, S. K. 1999. Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc. Natn. Acad. Sci. USA 96: 9009–14.
Luo, Z. Q., Qin, Y. and Farrand, S. K. 2000. The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. J. Biol. Chem. 275: 7713–22.
Luo, Z. Q., Smyth, A. J., Gao, P., Qin, Y. and Farrand, S. K. 2003. Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing transcriptional activator. J. Biol. Chem. 278: 13173–82.
Maris, A. E., Sawaya, M. R., Kaczor-Grzeskowiak, M.et al. 2002. Dimerization allows DNA target site recognition by the NarL response regulator. Nat. Struct. Biol. 9: 771–8.
Medina, G., Juarez, K., Valderrama, B. and Soberon-Chavez, G. 2003. Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J. Bacteriol. 185: 5976–83.
Moré, M. I., Finger, L. D., Stryker, J. L.et al. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272: 1655–8.
Morris, R. O. 1990. Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In Davies, P. J. (ed.), Plant Hormones and Their Role in Plant Growth and Development, pp. 636–55. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Nester, E. W., Merlo, D. J., Drummond, M. H.et al. 1977. The incorporation and expression of Agrobacterium plasmid genes in crown gall tumors. Basic Life Sci. 9: 181–96.
Oger, P. and Farrand, S. K. 2001. Co-evolution of the agrocinopine opines and the agrocinopine-mediated control of TraR, the quorum-sensing activator of the Ti plasmid conjugation system. Molec. Microbiol. 41: 1173–85.
Oger, P. and Farrand, S. K. 2002. Two opines control conjugal transfer of an Agrobacterium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J. Bacteriol. 184: 1121–31.
Oger, P., Kim, K. S., Sackett, R. L., Piper, K. R. and Farrand, S. K. 1998. Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Molec. Microbiol. 27: 277–88.
Pappas, K. M. and Winans, S. C. 2003. A LuxR-type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes. Molec. Microbiol. 48: 1059–73.
Pappas, K. M. and Winans, S. C. 2003. The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon. Molec. Microbiol. 49: 441–55.
Parkinson, G., Wilson, C., Gunasekera, A.et al. 1996. Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface. J. Molec. Biol. 260: 395–408.
Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E. Jr. and Greenberg, E. P. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natn. Acad. Sci. USA 96: 4360–5.
Pierson, L. S. I., D. W. Wood and S. B. von Bodman 1999. Quorum sensing in plant-associated bacteria. In Dunny, G. M. and Winans, S. C. (eds), Cell-Cell Signaling in Bacteria, pp. 101–15. Washington, DC: ASM Press.
Piper, K. R., Beck von Bodman, S. and Farrand, S. K. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448–50.
Piper, K. R., Beck Von Bodman, S., Hwang, I. and Farrand, S. K. 1999. Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium. Molec. Microbiol. 32: 1077–89.
Pohlman, R. F., Genetti, H. D. and Winans, S. C. 1994. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Molec. Microbiol. 14: 655–68.
Qin, Y., Luo, Z. Q. and Farrand, S. K. 2004. Domains formed within the N-terminal region of the quorum-sensing activator TraR are required for transcriptional activation and direct interaction with RpoA from agrobacterium. J. Biol. Chem. 279: 40844–51.
Qin, Y., Luo, Z. Q., Smyth, A. J.et al. 2000. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J. 19: 5212–21.
Sheng, J. and Citovsky, V. 1996. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8: 1699–710.
Shoemaker, B. A., Portman, J. J. and Wolynes, P. G. 2000. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natn. Acad. Sci. USA 97: 8868–73.
Stevens, A. M., Fujita, N., Ishihama, A. and Greenberg, E. P. 1999. Involvement of the RNA polymerase alpha-subunit C-terminal domain in LuxR-dependent activation of the Vibrio fischeri luminescence genes. J. Bacteriol. 181: 4704–7.
Stevens, A. M. and Greenberg, E. P. 1997. Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. Bacteriol. 179: 557–62.
Swiderska, A., Berndtson, A. K., Cha, M. R.et al. 2001. Inhibition of the Agrobacterium tumefaciens TraR quorum-sensing regulator. Interactions with the TraM anti-activator. J. Biol. Chem. 276: 49449–58.
Trott, A. E. and Stevens, A. M. 2001. Amino acid residues in LuxR critical for its mechanism of transcriptional activation during quorum sensing in Vibrio fischeri. J. Bacteriol. 183: 387–92.
Urbanowski, M. L., Lostroh, C. P. and Greenberg, E. P. 2004. Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J. Bacteriol. 186: 631–7.
Val, D. L. and Cronan, J. E. Jr 1998. In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J. Bacteriol. 180: 2644–51.
Larebeke, N., Engler, G., Holsters, M.et al. 1974. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169–70.
Vannini, A., Volpari, C. and Marco, S. Di 2004. Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J. Biol. Chem. 279: 24291–6.
Vannini, A., Volpari, C., Gargioli, C.et al. 2002. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 21: 4393–401.
Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132: 44–51.
Watson, W. T., Minogue, T. D., Val, D. L., Bodman, S. Beck and Churchill, M. E. 2002. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Molec. Cell 9: 685–94.
Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. and Salmond, G. P. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365–404.
Winans, S. C. 1992. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol. Rev. 56: 12–31.
Winans, S. C., J. Zhu and M. I. Moré 1999. Cell density-dependent gene expression by Agrobacterium tumefaciens during colonization of crown gall tumors. In Dunny, G. M. and Winans, S. C. (eds), Cell-Cell Signaling in Bacteria, pp. 117–28. Washington, DC: ASM Press.
Wood, D. W., Setubal, J. C., Kaul, R.et al. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317–23.
Zhang, H. B., Wang, C. and Zhang, L. H. 2004. The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Molec. Microbiol. 52: 1389–401.
Zhang, H. B., Wang, L. H. and Zhang, L. H. 2002. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natn. Acad. Sci. USA 99: 4638–43.
Zhang, L., Murphy, P. J., Kerr, A. and Tate, M. E. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446–8.
Zhang, L. H. and Kerr, A. 1991. A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens. J. Bacteriol. 173: 1867–72.
Zhang, R. G., Pappas, T., Brace, J. L.et al. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971–4.
Zhu, J., Beaber, J. W., Moré, M. I.et al. 1998. Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180: 5398–405.
Zhu, J., Oger, P. M., Schrammeijer, B.et al. 2000. The bases of crown gall tumorigenesis. J. Bacteriol. 182: 3885–95.
Zhu, J. and Winans, S. C. 1998. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Molec. Microbiol. 27: 289–97.
Zhu, J. and Winans, S. C.. 1999. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natn. Acad. Sci. USA 96: 4832–7.
Zhu, J. and Winans, S. C. 2001. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natn. Acad. Sci. USA 98: 1507–12.