Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-05T15:02:37.908Z Has data issue: false hasContentIssue false

11 - Mechanisms of Perceptual Categorization in Birds

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 208 - 228
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, F. G. and Valentin, V. V. (2005). Multiple systems of perceptual category learning: Theory and cognitive tests. In Handbook of Categorization in Cognitive Science, eds. Cohen, H. and Lefebvre, C.. New York: Elsevier, pp. 547572.Google Scholar
Astley, S. L. and Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons: All negative stimuli are not created equal. Journal of Experimental Psychology: Animal Behavior Processes, 18, 193207.Google Scholar
Aust, U. and Braunöder, E. (2015). Transfer between local and global processing levels by pigeons (Columba livia) and humans (Homo sapiens) in exemplar- and rule-based categorization tasks. Journal of Comparative Psychology, 129 (1), 116.Google Scholar
Aust, U. and Huber, L. (2001). The role of item-and category-specific information in the discrimination of people versus nonpeople images by pigeons. Animal Learning & Behavior, 29, 107119.Google Scholar
Aust, U. and Huber, L. (2002). Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Animal Learning & Behavior, 30, 165176.Google Scholar
Aust, U. and Huber, L. (2003). Elemental versus configural perception in a people-present/people absent discrimination task by pigeons. Learning & Behavior, 31, 213224.Google Scholar
Balda, R. P. and Kamil, A. C. (2006). Linking life zones, history traits, ecology, and spatial cognition in four allopatric southwestern seed caching corvids. In Animal Spatial Cognition: Comparative, Neural & Computational Approaches, eds. Brown, M. F. and Cook, R. G.. [On-line]. Available: www.pigeon.psy.tufts.edu/asc/Google Scholar
Brooks, L. R. (1978). Nonanalytic concept formation and memory for instances. In Cognition and Categorization, eds. Rosch, E. and Lloyd, B. B.. Hillsdale, NJ: Erlbaum, pp. 169211.Google Scholar
Cavoto, K. K. and Cook, R. G. (2001). Cognitive precedence for local information in hierarchical stimulus processing by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 27(1), 316.Google Scholar
Cerella, J. (1977). Absence of perspective processing in the pigeon. Pattern Recognition, 9, 6568.Google Scholar
Cerella, J. (1979). Visual classes and natural categories in the pigeon. Journal of Experimental Psychology: Human Perception and Performance, 5, 6877.Google Scholar
Cerella, J. (1982). Mechanisms of concept formation in the pigeon. In Analysis of visual behavior, eds. Ingle, D. J., Goodale, M. A. and Mansfield, R. W.. Cambridge, MA: MIT Press, pp. 241263.Google Scholar
Cerella, J. (1986). Pigeons and perceptrons. Pattern Recognition, 19, 431438.CrossRefGoogle Scholar
Cerella, J. (1990). Shape constancy in the pigeon. In Quantitative analyses of behavior: Behavioral approaches to pattern recognition and concept formation (Vol. 8), eds. Commons, M. L., Herrnstein, R. J., Kosslyn, S. M. and Mumford, D. B.. Hillsdale, NJ: Erlbaum, pp. 145163.Google Scholar
Chiandetti, C., Pecchia, T., Patt, F. and Vallortigara, G. (2014). Visual hierarchical processing and lateralization of cognitive functions through domestic chick's eyes. PLOS ONE, 9(1), e84435.Google Scholar
Cook, R. G. (2001). Hierarchical stimulus processing by pigeons. In Avian visual cognition, ed. Cook, R. G.. Medford, MA: Tufts University E-book. [On-line]. Available: www.pigeon.psy.tufts.edu/avc/cook/.Google Scholar
Cook, R. G. and Fagot, J. (2009). First trial reward promote 1-trial learning and prolonged memory in pigeon and baboon. Proceedings of the National Academy of Sciences USA, 106(23), 95309533.CrossRefGoogle ScholarPubMed
Cook, R. G., Levison, D. G., Gillett, S. R. and Blaisdell, A. P. (2005). Capacity and limits of associative memory in pigeons. Psychonomical Bulletin and Review, 12, 350358.Google Scholar
Cook, R. G. and Smith, J. D. (2006). Stages of abstraction and exemplar memorization in pigeon category learning. Psychological Science, 17(12), 10591067.Google Scholar
Cook, R. G., Wright, A. A. and Kendrick, D. F. (1990). Visual categorization by pigeons In Quantitative analyses of behavior: Behavioral approaches to pattern recognition and concept formation, ed. Commons, M. L. et al. Hillsdale, NJ: Erlbaum, pp. 187214.Google Scholar
D'Amato, M. R. and Van Sant, P. (1988). The person concept in monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes, 14, 4355.Google Scholar
Deruelle, C. and Fagot, J. (1998). Visual search for global/local stimulus features in humans and baboons. Psychonomic Bulletin and Review, 5, 476481.Google Scholar
Fagot, J. and Cook, R. G. (2006). Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proceedings of the National Academy of Sciences USA, 103, 1756417567.Google Scholar
Fagot, J. and Deruelle, C. (1997). Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). Journal of Experimental Psychology: Human Perception and Performance, 32, 429442.Google Scholar
Fagot, J. and Tomonaga, M. (1999). Global and local processing in humans (Homo sapiens) and chimpanzees (Pan troglodytes): use of a visual search task with compound stimuli. Journal of Comparative Psychology, 113, 312.Google Scholar
Fontanari, L., Rugani, R., Regolin, L. and Vallortigara, G. (2011). Object individuation in three-day old chicks: use of property and spatiotemporal information. Developmental Science, 14, 12351244.Google Scholar
Garner, W. R. (1974). The Processing of Information and Structure. Potomac, MD: Erlbaum.Google Scholar
Goto, K., Wills, , , J. and Lea, , , S. E. G. (2004). Global-feature classification can be acquired more rapidly than local-feature classification in both humans and pigeons. Animal Cognition, 7, 109113.Google Scholar
Herrnstein, R. J. (1984). Objects, categories, and discriminative stimuli. In Animal Cognition, eds. Roitblat, H. L., Bever, T. G. and Terrace, H. S.. Hillsdale, NJ: Erlbaum, pp. 233261.Google Scholar
Herrnstein, R. J. (1990). Levels of categorization. In Signal and sense. Local and global order in perceptual maps, eds. Edelman, G. M., Gall, W. E. and Cowan, W. M.. New York: John Wiley and Sons Inc., pp. 365413.Google Scholar
Herrnstein, R. J., and Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146, 549551.Google Scholar
Herrnstein, R. J., Loveland, D. H., and Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2(4), 285302.Google Scholar
Huber, L. (2000). Generic perception: Open-ended categorization of natural classes. In Picture perception in animals, ed. Fagot, J.. Hove: Psychology Press, pp. 219261.Google Scholar
Huber, L. (2001). Visual categorization in pigeons. In Avian visual cognition, ed. Cook, R. G.. Medford, MA: Tufts University E-book. [On-line]. Available: www.pigeon.psy.tufts.edu/avc/huber/.Google Scholar
Huber, L. (2010). Categories and Concepts: Language-Related Competences in Non-Linguistic Species. In Encyclopedia of Animal Behavior, eds. Breed, D. M. and Moore, J.. Oxford: Academic Press, pp. 261266.Google Scholar
Huber, L. and Aust, U. (2011). A modified feature theory as an account of pigeon visual categorization. In The Oxford Handbook of Comparative Cognition, eds. Zentall, T. R. and Wasserman, E. A.. New York: Oxford University Press, pp. 497512.Google Scholar
Huber, L. and Lenz, R. (1993). A test of the linear feature model of polymorphous concept discrimination with pigeons. Quarterly Journal of Experimental Psychology, 46B, 118.Google Scholar
Huber, L. and Lenz, R. (1996). Categorization of prototypical stimulus classes by pigeons. Quarterly Journal of Experimental Psychology, 498, 111133.Google Scholar
Huber, L., Troje, , , N. F., Loidolt, M., Aust, , , U. and Grass, , , D. (2000). Natural categorization through multiple feature learning in pigeons. Quarterly Journal of Experimental Psychology, 53B, 341357.Google Scholar
Jitsumori, M. and Ohkubo, O. (1996). Orientation discrimination and categorization of photographs of natural objects by pigeons. Behavioural Processes, 38, 205226.Google Scholar
Kemler Nelson, D. G. (1984). The effect of intention on what concepts are acquired. Journal of Verbal Learning and Verbal Behavior, 23, 734759.Google Scholar
Kimchi, R. (1992). Primacy of holistic processing and global/local paradigm: A critical review. Psychological Bulletin, 112, 2438.Google Scholar
Kinchla, R. A., Solis-Macias, V. and Hoffman, J. (1983). Attending to different levels of structure in a visual image. Perception and Psychophysics, 33, 110.Google Scholar
Kinchla, R. A. and Wolfe, J. M. (1979). The order of visual processing. Top-down, bottom-up or middle-out. Perception & Psychophysics, 25, 225231.CrossRefGoogle ScholarPubMed
Kirkpatrick, K. (2001). Object recognition. In Avian visual cognition, ed. Cook, R. G.. Medford, MA: Tufts University E-book. [On-line]. Available: www.pigeon.psy.tufts.edu/avc/kirkpatrick/.Google Scholar
Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 2244.Google Scholar
Lazareva, O. F., Freiburger, K. L. and Wasserman, E. A. (2006). Effects of stimulus manipulations on visual categorization in pigeons. Behavioural Processes, 72, 224233.Google Scholar
Lazareva, O. F., Shimizu, T. and Wasserman, E. A. (2012). How Animals See the World. New York: Oxford University Press.Google Scholar
Lazareva, O. F. and Wasserman, E. A. (2008). Categories and concepts in animals. In Learning and Memory: A Comprehensive Reference, ed. Byrne, J. H.. Oxford: Academic Press, pp. 197226.Google Scholar
Lea, S. E. G. (1984). In what sense do pigeons learn concepts? In Animal Cognition, eds. Roitblat, H. L., Bever, T. G. and Terrace, H. S.. Hillsdale, NJ: Erlbaum, pp. 263276.Google Scholar
Lea, S. E. G. and Harrison, , , S. N. (1978). Discrimination of polymorphous stimulus sets by pigeons. Quarterly Journal of Experimental Psychology, 30B, 521537.Google Scholar
Lea, S. E. G., Lohmann, A. and Ryan, C. M. E. (1993). Discrimination of 5-dimensional stimuli by pigeons: Limitations of feature analysis. Quarterly Journal of Experimental Psychology, 46B, 1942.Google Scholar
Lea, S. E. G. and Ryan, , , C. M. E (1983). Feature analysis of pigeons’ acquisition of concept discrimination. In Quantitative analyses of behavior: Acquisition processes, eds. Commons, M. L., Herrnstein, R. J. and Wagner, A. R.. Cambridge, MA: Ballinger, pp. 239253.Google Scholar
Lea, S. E. G. and Wills, , , A. J. (2008). Use of multiple dimensions in learned discriminations. Comparative Cognition and Behavior Reviews, 3, 115133.CrossRefGoogle Scholar
Lea, S. E. G., Wills, A. J. and Ryan, C. M. E. (2006). Why are artificial polymorphous concepts so hard for birds to learn? Quarterly Journal of Experimental Psychology, 59, 251267.Google Scholar
Loidolt, M., Aust, U., Meran, I. and Huber, L. (2003). Pigeons use item-specific and category-level information in the identification and categorization of human face stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 29, 261276.Google Scholar
Lubow, R. E. (1974). Higher-order concept formation in the pigeon. Journal of the Experimental Analysis of Behavior, 21, 475483.CrossRefGoogle Scholar
Mackintosh, N. J. (2000). Abstraction and discrimination. In The Evolution of Cognition, eds. Heyes, C. and Huber, L.. Cambridge, MA: MIT Press, pp. 123141.Google Scholar
Mackintosh, N. J. and Little, L. (1969). Intradimensional and extradimensional shift learning by pigeons. Psychonomic Science, 14, 56.Google Scholar
Marr, D. and Nishihara, H. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London B, 200, 269294.Google Scholar
Medin, D. L. (1989). Concepts and conceptual structure. American Psychologist, 44, 14691481.Google Scholar
Medin, D. L. and Aguilar, C. (2001). Categorization. In The MIT Encyclopedia of the Cognitive Sciences, eds. Wilson, R. A. and Keil, F. C.. Cambridge, MA: MIT Press, pp. 104106.Google Scholar
Medin, D. L., Dewey, G. I. and Murphy, T. D. (1983). Relationships between item and category learning: Evidence that abstraction is not automatic. Journal of Experimental Psychology: Learning, Memory and Cognition, 9(4), 607625.Google Scholar
Medin, D. L. and Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207238.Google Scholar
Morgan, M. J., Fitch, M. D., Holman, J. G. and Lea, S. E. G. (1976). Pigeons learn the concept of an “A”. Perception, 5, 5766.Google Scholar
Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353383.Google Scholar
Parron, C. and Fagot, J. (2007). Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with the Ebbinghaus Illusion. Journal of Comparative Psychology, 121(4), 405411.Google Scholar
Pearce, J. M. (1988). Stimulus generalization and the acquisition of categories by pigeons. In Thought without language, ed. Weiskrantz, L.. Oxford: Oxford University Press, pp. 132152.Google Scholar
Pearce, J. M. (1989). The acquisition of an artificial category by pigeons. Quarterly Journal of Experimental Psychology, 41B, 381406.Google Scholar
Pearce, J. M. (1991). The acquisition of abstract and concrete categories by pigeons. In Current topics in animal learning: Brain, emotion, and cognition, eds. Dachowski, L. and Flaherty, C.. Hillsdale, NJ: Erlbaum, pp. 141164.Google Scholar
Pearce, J. M. (1994). Similarity and discrimination: A selective review and a connectionist model. Psychological Review, 101, 587607.CrossRefGoogle Scholar
Pearce, J. M., Esber, G. R., George, D. N. and Haselgrove, M. (2008). The nature of discrimination learning in pigeons. Learning & Behavior, 36(3), 188199.Google Scholar
Pepperberg, I. M. (1983). Cognition in the African Grey Parrot: Preliminary evidence for auditory/vocal comprehension of the class concept. Animal Learning & Behavior, 11, 179185.CrossRefGoogle Scholar
Pomerantz, J. R. (1983). Global and local precedence: Selective attention in form and motion perception. Journal of Experimental Psychology: General, 112, 516540.Google Scholar
Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral and Brain Sciences, 28, 149.CrossRefGoogle ScholarPubMed
Ravignani, A., Westphal-Fitch, G., Aust, U., Schlumpp, M. and Fitch, T. W. (2015). More than one way to see it: Individual heuristics in avian visual cognition. Cognition, 143, 1324.Google Scholar
Restle, F. (1957). Theory of selective learning with probable reinforcements. Psychological Review, 64, 182191.Google Scholar
Rosch, E. (1978). Principles of categorization. In Cognition and categorization, eds. Rosch, E. and Lloyd, B. B.. Hillsdale, NJ: Erlbaum. pp. 2748.Google Scholar
Shepard, R. N., Hovland, C. I. and Jenkins, H. M. (1961). Learning and memorization of classifications. Journal of Experimental Psychology, 65, 94102.Google Scholar
Smith, E. E. and Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Smith, E. E. and Medin, D. L. (1999). The exemplar view. In Concepts: Core readings, eds. Margolis, E. and Laurence, S.. Cambridge, MA: MIT Press, pp. 207221.Google Scholar
Smith, J. D., Ashby, F. G., Berg, M. E., et al. (2011). Pigeons' categorization may be exclusively nonanalytic. Psychonomical Bulletin and Review, 18, 414421.Google Scholar
Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J. and Ashby, F. G. (2010). Implicit and explicit category learning by macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 36, 5465.Google Scholar
Smith, J. D., Berg, M. E., Cook, R. G., et al. (2012a). Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Processes, 36(10), 23552369.Google Scholar
Smith, J. D., Crossley, M. J., Boomer, J., et al. (2012b). Implicit and explicit category learning by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 126(3), 294304.Google Scholar
Soto, F. A. and Wasserman, E. A. (2014). Mechanisms of object recognition: what we have learned from pigeons. Frontiers in Neural Circuits, 8, 122. DOI: 10.3389/fncir.2014.00122Google Scholar
Spence, K. W. (1937). The differential response to stimuli varying within a single dimension. Psychological Review, 44, 430444.Google Scholar
Spinozzi, G., De Lillo, C. and Truppa, V. (2003). Global and local processing of hierarchical visual stimuli in tufted capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 117, 1523.Google Scholar
Stobbe, N., Westphal-Fitch, G., Aust, , , U. and Fitch, , , T. W. (2012). Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia). Philosophical Transactions of the Royal Society B, 367, 19952006.Google Scholar
Troje, N. F. and Aust, U. (2013). What do you mean with “direction”? Local and global cues to biological motion perception in pigeons. Vision Research, 79, 4755.Google Scholar
Troje, N. F., Huber, L., Loidolt, M., Aust, U. and Fieder, M. (1999). Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision Research, 39, 353366.Google Scholar
van Heijningen, C. A., de Visser, J., Zuidema, , , W. and ten Cate, C. (2009). Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proceedings of the National Academy of Science USA, 106(48), 2053820543.Google Scholar
Vander Wall, S. B. (1990). Food hoarding in animals. Chicago, London: The University of Chicago Press.Google Scholar
Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal or Experimental Psychology: Human Perception and Performance, 8, 562581.Google Scholar
Watanabe, S. (2011). Discrimination of painting style and quality: pigeons use different strategies for different tasks. Animal Cognition, 14(6), 797808.Google Scholar
Werner, C. W. and Rehkämper, G. (2001). Categorization of multidimensional geometric figures by chickens (Gallus gallus f. domestica): fit of basic assumptions from exemplar, feature and prototype theory. Animal Cognition, 4, 3748.Google Scholar
Wills, A. J., Lea, S. E. G., Leaver, L. A., et al. (2009). A comparative analysis of the categorization of multidimensional stimuli: I. Unidimensional classification does not necessarily imply analytic processing; evidence from pigeons (Columba livia), squirrels (Sciurus carolinensis), and humans (Homo sapiens). Journal of Comparative Psychology, 123, 391405.Google Scholar
Wright, A. A., Cook, R. G., Rivera, J. J., Sands, S. F. and Delius, J. D. (1988). Concept learning by pigeons: Matching-to-sample with trial-unique video picture stimuli. Animal Learning & Behavior, 16, 436444.CrossRefGoogle Scholar
Yamazaki, Y., Aust, U., Huber, L., Hausmann, M. and Güntürkün, O. (2007). Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition, 104, 315344.Google Scholar
Zayan, R. and Vauclair, J. (1998). Categories as paradigms for comparative cognition. Behavioural Processes, 42, 8799.Google Scholar
Zentall, T. R., Galizio, M. and Critchfield, T. S. (2002). Categorization, concept learning, and behavioral analysis: An introduction. Journal of the Experimental Analysis of Behavior, 78, 237248.Google Scholar
Zentall, T. R., Wasserman, E. A. and Urcuioli, P. J. (2014). Associative concept learning in animals. Journal of the Experimental Analysis of Behavior, 101, 130151.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×