Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T00:34:08.880Z Has data issue: false hasContentIssue false

1 - Lensing basics

Published online by Cambridge University Press:  05 September 2016

Sherry H. Suyu
Affiliation:
Institute of Astronomy and Astrophysics, Taiwan
Evencio Mediavilla
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jose A. Muñoz
Affiliation:
University of Valencia
Francisco Garzón
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Terence J. Mahoney
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

The field of gravitational lensing has evolved from a theoretical fantasy to a robust astrophysical tool in the past few decades. In this chapter, we introduce the basics of gravitational lensing. We explain what gravitational lensing is in Section 1.1 and briefly recount the history of lensing in Section 1.2. We continue with the basic theory for lensing in Section 1.3 and work through properties of simple lens mass distributions in Section 1.4.

Introduction

A perhaps familiar example of lensing is the bending of light by optics, such as the glasses that some people wear, or binoculars that some people use for viewing wildlife or events. These two examples of optical lenses are linear in the sense that one sees only a single (perhaps magnified) image of the object of interest. In contrast, the base of a wine glass is a non-linear lens so that through the glass one can see multiple images of the background object. Figure 1.1 is an illustration of this phenomenon. In the top-left panel, we see the original source of light that emanates from the candle. In the top-right panel, we see four images of the source as lensed by the wine glass: one in the lower left, two close pairs on the lower right and one behind the stem of the wine glass. By tilting the base of the wine glass, we change the properties of the optical lens and thus the light paths of the images we see. For example, in the bottom-right panel, there are only two multiple images of the background source. In the case where the stem of a symmetric wine glass is aligned perfectly along of the line of sight to the source, the source is lensed into a ring, as shown in the bottom-left panel.

In gravitational lensing, a massive object takes on the role of the lens, similar to the wine glass in optical lensing. According to Einstein's General Theory of Relativity, mass curves spacetime. Light, taking the shortest path in this curved spacetime, thus ‘bends’ around massive objects. Anything that has mass (e.g. planets, stars, galaxies, and clusters of galaxies) can thus act as a gravitational lens.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, C. et al. 1993, Nature, 365, 621
Applegate, D. E. et al. 2014, MNRAS, 439, 48
Aubourg, E. et al. 1993, Nature, 365, 623
Auger, M. W., Treu, T., Bolton, A. S., Gavazzi, R., Koopmans, L. V. E., Marshall, P. J.,
Moustakas, L. A. & Burles, S. 2010, ApJ, 724, 511
Bachelet, E. et al. 2012, ApJ, 754, 73
Barkana, R. 1998, ApJ, 502, 531
Barnabè, M., Czoske, O., Koopmans, L. V. E., Treu, T., Bolton, A. S. & Gavazzi, R. 2009, MNRAS, 399, 21
Barnabè, M., Czoske, O., Koopmans, L. V. E., Treu, T. & Bolton, A. S. 2011, MNRAS, 415, 2215
Bartelmann, M. 2010, Classical and Quantum Gravity, 27, 233001
Beaulieu, J.-P. et al. 2006, Nature, 439, 437
Benson, B. A. et al. 2013, ApJ, 763, 147
Blandford, R. & Narayan, R. 1986, ApJ, 310, 568
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T. & Moustakas, L. A. 2006, ApJ, 638, 703
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., Gavazzi, R., Moustakas, L. A., Wayth, R. & Schlegel, D. J. 2008, ApJ, 682, 964
Bolton, A. S. et al. 2012, ApJ, 757, 82
Bradač, M. et al. 2009, ApJ, 706, 1201
Brainerd, T. G., Blandford, R. D. & Smail, I. 1996, ApJ, 466, 623
Browne, I. W. A. et al. 2003, MNRAS, 341, 13
Brownstein, J. R. et al. 2012, ApJ, 744, 41
Burke, W. L. 1981, ApJL, 244, L1
Coe, D. et al. 2013, ApJ, 762, 32
Courbin, F. et al. 2011, A&A, 536, A53
Dalal, N. & Kochanek, C. S. 2002, ApJ, 572, 25
Dawson, K. S. et al. 2013, AJ, 145, 10
Dutton, A. A. & Treu, T. 2014, MNRAS, 438, 3594
Dye, S., Evans, N. W., Belokurov, V., Warren, S. J. & Hewett, P. 2008, MNRAS, 388, 384
Fadely, R. & Keeton, C. R. 2012, MNRAS, 419, 936
Fadely, R., Keeton, C. R., Nakajima, R. & Bernstein, G. M. 2010, ApJ, 711, 246
Falco, E. E., Gorenstein, M. V. & Shapiro, I. I. 1985, ApJL, 289, L1
Fassnacht, C. D., Xanthopoulos, E., Koopmans, L. V. E. & Rusin, D. 2002, ApJ, 581, 823
Fassnacht, C. D., Gal, R. R., Lubin, L. M., McKean, J. P., Squires, G. K. & Readhead, A. C. S. 2006, ApJ, 642, 30
Fassnacht, C. D., Koopmans, L. V. E. & Wong, K. C. 2011, MNRAS, 410, 2167
Faure, C. et al. 2008, ApJS, 176, 19
Gavazzi, R., Treu, T., Rhodes, J. D., Koopmans, L. V. E., Bolton, A. S., Burles, S., Massey, R. J. & Moustakas, L. A. 2007, ApJ, 667, 176
Gavazzi, R., Treu, T., Marshall, P. J., Brault, F. & Ruff, A. 2012, ApJ, 761, 170
Gorenstein, M. V., Shapiro, I. I. & Falco, E. E. 1988, ApJ, 327, 693
Grillo, C., Gobat, R., Lombardi, M. & Rosati, P. 2009, ApJ, 501, 461
Hezaveh, Y. D. et al. 2013, ApJ, 767, 132
Inada, N. et al. 2012, AJ, 143, 119
Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T. & Jedrzejewski, R. I. 1989, AJ, 98, 1989
Jackson, N. 2008, MNRAS, 389, 1311
Jackson, N., Rampadarath, H., Ofek, E. O., Oguri, M. & Shin, M.-S. 2012, MNRAS, 419, 2014
Jullo, E., Natarajan, P., Kneib, J.-P., D'Aloisio, A., Limousin, M., Richard, J. & Schmid, C. 2010, Science, 329, 924
Kassiola, A. & Kovner, I. 1993, ApJ, 417, 450
Keeton, C. R. & Zabludoff, A. I. 2004, ApJ, 612, 660
Kilbinger, M. et al. 2013, MNRAS, 430, 2200
Kochanek, C. S., Morgan, N. D., Falco, E. E., McLeod, B. A., Winn, J. N., Dembicky, J. & Ketzeback, B. 2006, ApJ, 640, 47
Koopmans, L. V. E. & Treu, T. 2003, ApJ, 583, 606
Koopmans, L. V. E. et al. 2009, ApJL, 703, L51
Kormann, R., Schneider, P. & Bartelmann, M. 1994, A&A, 284, 285
Limousin, M. et al. 2009, A&A, 502, 445
Limousin, M., Morandi, A., Sereno, M., Meneghetti, M., Ettori, S., Bartelmann, M. & Verdugo, T. 2013, Space Science Reviews, 177, 155
Lynds, R. & Petrosian, V. 1986, BAAS, 18, 1014
Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M. & Brinkmann, J. 2006, MNRAS, 368, 715
Marshall, P. J. et al. 2007, ApJ, 671, 1196
Marshall, P. J., Hogg, D. W., Moustakas, L. A., Fassnacht, C. D., Bradač, M., Schrabback, T. & Blandford, R. D. 2009, ApJ, 694, 924
McKean, J. P., Koopmans, L. V. E., Flack, C. E., Fassnacht, C. D., Thompson, D., Matthews, K., Blandford, R. D., Readhead, A. C. S. & Soifer, B. T. 2007, MNRAS, 378, 109
Momcheva, I., Williams, K., Keeton, C. & Zabludoff, A. 2006, ApJ, 641, 169
Morgan, C. W., Kochanek, C. S., Morgan, N. D. & Falco, E. E. 2006, ApJ, 647, 874
Morgan, C.W., Eyler, M. E., Kochanek, C. S., Morgan, N. D., Falco, E. E., Vuissoz, C., Courbin, F. & Meylan, G. 2008, ApJ, 676, 80
Mosquera, A. M., Kochanek, C. S., Chen, B., Dai, X., Blackburne, J. A. & Chartas, G. 2013, ApJ, 769, 53
Myers, S. T. et al. 2003, MNRAS, 341, 1
Natarajan, P., Kneib, J.-P., Smail, I., Treu, T., Ellis, R., Moran, S., Limousin, M. & Czoske, O. 2009, ApJ, 693, 970
Negrello, M. et al. 2010, Science, 330, 800
Newman, A. B., Treu, T., Ellis, R. S. & Sand, D. J. 2013, ApJ, 765, 25
Oguri, M. et al. 2006, AJ, 132, 999
Okabe, N., Smith, G. P., Umetsu, K., Takada, M. & Futamase, T. 2013, ApJL, 769, L35
Paczyński, B. 1986, ApJ, 304, 1
Paczyński, B. 1987, Nature, 325, 572
Refsdal, S. 1964, MNRAS, 128, 307
Refsdal, S. 1966, MNRAS, 132, 101
Ruff, A. J., Gavazzi, R., Marshall, P. J., Treu, T., Auger, M. W. & Brault, F. 2011, ApJ, 727, 96
Schneider, P. 1984, A&A, 140, 119
Schneider, P. 1985, A&A, 143, 413
Schneider, P., Ehlers, J. & Falco, E. E. 1992, Gravitational Lenses: XIV (Berlin: Springer-Verlag)
Schneider, P., Kochanek, C. S. & Wambsganss, J. 2006, Gravitational Lensing: Strong, Weak and Micro (Berlin: Springer-Verlag)
Schrabback, T. et al. 2010, A&A, 516, A63
Sonnenfeld, A., Treu, T., Gavazzi, R., Marshall, P. J., Auger, M. W., Suyu, S. H., Koopmans, L. V. E. & Bolton, A. S. 2012, ApJ, 752, 163
Soucail, G., Fort, B., Mellier, Y. & Picat, J. P. 1987, A&A, 172, L14
Soucail, G., Mellier, Y., Fort, B., Mathez, G. & Cailloux, M. 1988, A&A, 191, L19
Suyu, S. H. 2012, MNRAS, 426, 868
Suyu, S. H. & Halkola, A. 2010, A&A, 524, A94
Suyu, S. H., Marshall, P. J., Blandford, R. D., Fassnacht, C. D., Koopmans, L. V. E., McKean, J. P. & Treu, T. 2009, ApJ, 691, 277
Suyu, S. H., Marshall, P. J., Auger, M. W., Hilbert, S., Blandford, R. D., Koopmans, L. V. E., Fassnacht, C. D. & Treu, T. 2010, ApJ, 711, 201
Suyu, S. H. et al. 2013, ApJ, 766, 70
Tewes, M. et al. 2013, A&A, 556, A22
Treu, T. 2010, ARA&A, 48, 87
Treu, T. & Koopmans, L. V. E. 2002, MNRAS, 337, L6
Treu, T. & Koopmans, L. V. E. 2004, ApJ, 611, 739
Treu, T., Gavazzi, R., Gorecki, A., Marshall, P. J., Koopmans, L. V. E., Bolton, A. S., Moustakas, L. A. & Burles, S. 2009, ApJ, 690, 670
Treu, T., Auger, M. W., Koopmans, L. V. E., Gavazzi, R., Marshall, P. J. & Bolton, A. S. 2010, ApJ, 709, 1195
Treu, T., Dutton, A. A., Auger, M. W., Marshall, P. J., Bolton, A. S., Brewer, B. J., Koo, D. C. & Koopmans, L. V. E. 2011, MNRAS, 417, 1601
Tyson, J. A., Wenk, R. A. & Valdes, F. 1990, ApJL, 349, L1
Vegetti, S., Lagattuta, D. J., McKean, J. P., Auger, M. W., Fassnacht, C. D. & Koopmans, L. V. E. 2012, Nature, 481, 341
Vieira, J. D. et al. 2013, Nature, 495, 344
von der Linden, A. et al. 2014, MNRAS, 439, 2
Walsh, D., Carswell, R. F. & Weymann, R. J. 1979, Nature, 279, 381
Winn, J. N., Rusin, D. & Kochanek, C. S. 2004, Nature, 427, 613
Wong, K. C., Keeton, C. R., Williams, K. A., Momcheva, I. G. & Zabludoff, A. I. 2011, ApJ, 726, 84
Wucknitz, O., Biggs, A. D. & Browne, I. W. A. 2004, MNRAS, 349, 14
Young, P., Gunn, J. E., Oke, J. B., Westphal, J. A. & Kristian, J. 1980, ApJ, 241, 507

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×