Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: December 2012

6 - Celestial mechanics of the N-body problem

from Part II - Foundations of astrometry and celestial mechanics

Summary

Introduction

The dynamics of celestial bodies is an important topic for astrometry. First, as we have seen in the previous chapter, the position and velocity of the observer with respect to the BCRS as well as the positions and velocities of Solar System objects are necessary to reduce observations for aberration, parallax, and gravitational light deflection. Second, astrometric observations represent an important source of information allowing us to model the dynamical behavior of various celestial systems: Earth satellites, interplanetary stations, major and minor planets of the Solar System, binary and multiple stars, exoplanetary systems, etc.

A modern introduction in the various techniques of celestial mechanics can be found in the books of Murray and Dermott (1999), Beutler (2005) and Roy (2005). In this chapter we give a short overview of the most important results and concentrate on the practical aspects of the N-body problem relevant to obtaining and processing high-accuracy astrometric data.

Related content

Powered by UNSILO
References
Aarseth, S. J. (2003). Gravitational N-body Simulations: Tools and Algorithms. Cambridge: Cambridge University Press.
Aarseth, S. J., Tout, Chr. A., and Mardling, R. A. (2008). The Cambridge N-Body Lectures. Berlin: Springer.
Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I. (1997). Mathematical Aspects of Classical and Celestial Mechanics. Berlin: Springer.
Beutler, G. (2005). Methods of Celestial Mechanics. Berlin: Springer.
Blanchet, L. (2006). Living Rev. Relativity, 9, 4, http://www.livingreviews.org/lrr-2006-4.
Bottke, W. F. Jr., Vokrouhlický, D., Rubincam, D. P., and Nesvorný, D. (2006). Ann. Rev. Earth Planet. Sci. 34, 157.
Bretagnon, P. and Francou, G. (1988). A&A, 202, 309.
Brouwer, D. and Clemence, G. M. (1985). Methods of Celestial Mechanics, 2nd edn. Orlando, FL: Academic Press.
Brumberg, V. A. (1972). Relativistic Celestial Mechanics. Moscow: Nauka (in Russian).
Brumberg, V. A. (1991). Essential Relativistic Celestial Mechanics. Bristol: Adam Hilger.
Butkevich, A. G. and Klioner, S. A. (2008). In A Giant Step: from Milli- to Microarcsecond Astrometry, eds. W. J., Jin, I., Platais and M. A. C., Perryman, Cambridge: Cambridge University Press, p. 252.
Chenciner, A. and Montgomery, R. (2000). Ann. Math. 152, 881.
Damour, T. and Vockrouhlický, D. (1995). Phys. Rev.D, 52, 4455.
Damour, T., Soffel, M., and Xu, Ch. (1991). Phys. Rev.D, 43, 3273.
Everhart, E. (1985). In Dynamics of Comets: Their Origin and Evolution, eds. A., Carusi and G. B., Valsecci. Dordrecht: Reidel, Astrophysics and Space Science Library, vol. 115, p. 85.
Fienga, A., Manche, H., Laskar, J., and Gastineau, M. (2008). A&A, 477, 315 (see also arXiv: 0906.2860).
Folkner, W. M. (2010). In Relativity in Fundamental Astronomy, eds. S. A., Klioner, P. K., Seidelmann, and M. H., Soffel. Cambridge: Cambridge University Press, p. 155.
Fukushima, T. (1996). AJ, 112, 2858.
Klioner, S. A. and Kopeikin, S. M. (1994). AJ, 427, 951.
Krasinsky, G. A., Pitjeva, E. V., Vasilyev, M. V., and Yagudina, E. I. (2002). Icarus, 158, 98.
Krogh, F. T. (1994). Annals of Numerical Mathematics, 1, 423 (the DIVA/QIVA software is available from http://mathalacarte.com).
Kuchynka, P., Laskar, J., Fienga, A., and Manche, H. (2010). A&A, 514, A96.
Landau, L. D. and Lifshitz, E. M. (2007). Course of Theoretical Physics. Amsterdam: Elsevier, Butterworth-Heinemann, vol. 1.
Marsden, B. G., Sekanina, Z., and Yeomans, D. K. (1973). AJ, 78, 211.
Montenbruck, O. and Gill, E. (2000). Satellite Orbits: Models, Methods and Applications. Berlin: Springer.
Moisson, X. and Bretagnon, P. (2001). Cel. Mech. Dyn. Astron., 80, 205.
Morbidelli, A. (2002). Modern Celestial Mechanics: Aspects of Solar System Dynamics. London: Taylor & Francis.
Moyer, T. D. (2003). Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Hoboken: Wiley-Interscience.
Murray, C. D. and Dermott, S. F. (1999). Solar System Dynamics. Cambridge: Cambridge University Press.
Newhall, X. X. (1989). Cel. Mech., 45, 305.
Pitjeva, E. V. (2005). Solar Syst. Res., 39, 176.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge: Cambridge University Press.
Roy, A. E. (2005). Orbital Motion, 4th edn. Bristol: IoP Publishing.
Soffel, M. H. (1989). Relativity in Astrometry, Celestial Mechanics and Geodesy. Berlin: Springer.
Standish, E.M. and Williams, J. G. (2012). In Explanatory Supplement to the Astronomical Almanac, 3rd edn., eds. S., Urban and K., Seidelmann, Herndon, VA, University Science Books.
Will, C. M. (1993). Theory and Experiment in Gravitational Physics. Cambridge: Cambridge University Press.