Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2014
  • Online publication date: June 2014

6 - Experimental Design and Quality Assurance

from Part II - Instrumentation and Sampling

References

Bailey, S.W. and Werdell, P.J. (2006). A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ., 102, 12–23.
Baker, A., Ward, D., Lieten, S.H., Periera, R., Simpson, E.C., and Slater, M. (2004). Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer. Water Res., 38, 2934–2938.
Barbini, R., Colao, F., Fantoni, R., Fiorani, L., and Palucci, A. (2001). Remote sensing of the Southern Ocean: Techniques and results. J. Optoel. Adv. Mat., 3, 817–830.
Belzile, C., Roesler, C.S., Christensen, J.P., Shakhova, N., and Semiletov, I. (2006). Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption. Est. Coast. Shelf Sci., 67, 441–449.
Blough, N.V., Zafiriou, O.C., and Bonilla, J. (1993). Optical absorption spectra of waters from the Orinoco River outflow: Terrestrial input of colored organic matter to the Caribbean. J. Geophys. Res., 98(C2), 2271–2278.
Breves, W. and Reuter, R. (2001). Bio-optical properties of gelbstoff in the Arabian Sea at the onset of the southwest monsoon. Earth Planet. Sci., preprint.
Cabaniss, S.E. and Shuman, M.S. (1987). Synchronous fluorescence spectra of natural waters: Tracing sources of dissolved organic matter. Mar. Chem., 21, 37–50.
Cetinic, I., Toro-Farmer, G., Ragan, M., Oberg, C., and Jones, B.H. (2009). Calibration procedure for Slocum glider deployed optical instruments. Opt. Express, 17, 15420–15430.
Chen R.F. (1999). In situ fluorescence measurements in coastal waters. Org. Geochem., 397–409.
Chen, R.F. and Bada, J.L. (1990). A laser-based fluorometry system for investigations of seawater and porewater fluorescence. Mar. Chem., 31, 219–230.
Chen, R.F. and Bada, J.L. (1992). The fluorescence of dissolved organic matter in seawater. Mar. Chem., 37, 191–221.
Chen, R.F. and Gardner, G.B. (2004). High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya plume regions. Mar. Chem., 89, 103–125.
Chen R.F., Gardner, G.B., Zhang, Y., Vlahos, P., Wang, X., and Rudnick, S.M. (1999). Chromophoric dissolved organic matter (CDOM) in four US estuaries. EOS, 80, 92.
Chen, R.F., Gardner, G.B., Huang, W., and Peri, F. (2007). Chromophoric dissolved organic matter (CDOM) dynamics in the Hudson River Plume. ASLO, Santa Fe, February 4–9, 2007.
Christian, G.D., Callis, J.B., and Davidson, E.R. (1981). Array detectors and excitation-emission matrices in multicomponent analysis. In E.L. Wehry (Ed.), Modern Fluorescence Spectroscopy, Vol. 4, pp. 111–165. New York: Plenum Press.
Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51, 325–346.
Coble, P.G. and Gagosian, R.B. (1991). The nature and distribution of fluorescent dissolved organic matter in the Black Sea and the Cariaco Trench. In E. Izdar and J.W. Murray (Eds.), Black Sea Oceanography, pp. 361–378. Dordrecht, the Netherlands: Kluwer Academic.
Coble, P.G., Gagosian, R.B., Codispoti, L.A., Friederich, G.E., and Christernsen, J.P. (1991). Dissolved fluorescence in the Black Sea. Deep-Sea Res. Pt. I, 38, S985–S1001.
Coble, P.G., Del Castillo, C.E., and Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. Pt. II, 45, 2195–2223.
Conmy R.N., Coble, P.G., and Del Castillo, C.E. (2004). Performance and calibration of the WetLabs SAFire in-situ fluorometer. Cont. Shelf Res., 24(3), 431–442.
Cullen, J.J. and Davis, R.F. (2003). The blank can make a big difference in oceanographic measurements. Limnol. Oceanogr. Bull., 12 (2), 29–34.
Davis, R.F., Stabeno, P.J., and Cullen, J.J. (2000). Use of optical measurements from moorings to detect coccolithophore blooms in the Bering Sea. In Proceedings of Ocean Optics XV Conference, Monaco. CD-ROM.
Delauney, L., Compère, C., and Lehaitre, M. (2101). Biofouling protection for marine environmental sensors. Ocean Sci., 6, 503–511.
Del Castillo C.E., Coble, P.G., Morel, J.M., Lopez, J.M,. and Corredor, J.E. (1999). Analysis of the optical properties of the Orinoco River Plume by absorption and fluorescence spectroscopy. Mar. Chem., 66, 35–51.
Del Castillo C.E., Coble, P.G., Conmy, R.N., Muller-Karger, F.E., Vanderbloomen, L., and Vargo, G.A. (2001). Multispectral in-situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf. Limnol. Oceanogr., 46(7), 1836–1843.
Desiderio, R.A., Moore, C., Lantz, C., and Cowles, T.J. (1997). Multiple excitation fluorometer for in situ oceanographic applications. Appl. Optics, 36, 1289–1296.
Downing, B.D., Boss, E., Bergamaschi, B.A., Fleck, J.A., Lionberger, M.A., Ganju, N.K., Schoellhamer, H., and Fujii, R. (2009). Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. Limnol. Oceanogr. Methods, 7, 119–131.
Drozdowska, V. (2007). The LIDAR investigation of the upper water layer fluorescence spectra of the Baltic Sea. Eur. Phys. J. Special Topics, 144, 141–145.
Ferrari, G.M. and Tassan, S. (1991). On the accuracy of determining light absorption by “yellow substance” through measurements of induced fluorescence. Limnol. Oceanogr., 36, 777–786.
Gardner, G.B., Chen, R.F., and Berry, A. (2005). High-resolution measurements of chromophoric dissolved organic matter (CDOM) in the Neponset River Estuary, Boston Harbor, MA. Mar. Chem., 96, 137–154.
Gee, Y., H.R. Gordon, and Voss, K.J. (1993). Simulation of inelastic scattering contributions to the irradiance field in the ocean: Variation in Fraunhofer line depths. Appl. Optics, 32, 4028–4036.
Geiskes, W.W.C., Kraay, G.W., and Tijssen, S.B. (1978). Chlorophylls and their degradation products in the deep pigment maximum layer of the tropical north Atlantic. Nether. J. Sea Res., 12(2), 195–204.
Green, S.A. and Blough, N.V. (1994). Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr., 39, 1903–916.
Haltrin, V.I., Kattawar, G.W., and Weidemann, A.D. (1991). Modeling of elastic and inelastic scattering effects in oceanic optics. In S. G. Ackleson and R. Frouin (Eds.), Proceedings of Ocean Optics XIII Conference. SPIE 2963, 597–602.
Hawes S.K., Carder, K.L., and Harvey, G.R. (1992). Quantum fluorescence efficiencies of fulvic and humic acids: Effects on ocean color and fluorometric detection. In Proceedings of Ocean Optics XI Conference. SPIE 1750, 212–223
Herman, A.W. and Denman, K.L. (1976). Rapid underway profiling of chlorophyll with an in situ fluorometer mounted on a batfish vehicle. Deep-Sea Res., 24, 385–397.
Heuermann, R., Loquay, K.D., and Reuter, R. (1995). A multi-wavelength in situ fluorometer for hydrographic measurements. Adv. Remote Sens., 3, 71–77.
Hoge, F.E. (2005). Oceanic inherent optical properties: Proposed single laser lidar and retrieval theory. Appl. Optics, 44, 7483–7486.
Hoge, F.E. and Swift, R.N. (1981). Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments. Appl. Optics, 20, 3197–3205.
Hoge, F.E. and Swift, R.N. (1983). Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter. Appl. Optics, 22, 3778–3786.
Hoge, F.E., Vodacek, A., and Blough, N.V. (1993). Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements. Limnol. Oceanogr., 38, 1394–1402
Hoge, F. E., Vodacek, A., Swift, R.R., Yungel, J.K., and Blough, N. (1995). Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements. App. Optics, 34, 7032–7038.
Hoge, F.E., Wright, C.W., Swift, R.N., and Yungel, J.K. (1998). Airborne laser-induced oceanic chlorophyll fluorescence: Solar-induced quenching corrections by use of concurrent downwelling irradiance measurements. Appl. Optics, 37, 3222–3226.
Hoge, F.E., Lyon, E., Wright, P.E., Wayne, C., Swift, R.N., and Yungel, J.K. (2005). Chlorophyll biomass in the global oceans: Airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter. Appl. Optics, 44, 2857–2862.
Hu, C. and Voss, K.J. (1998). Measurement of solar-stimulated fluorescence in natural waters. Limnol. Oceanogr., 43, 1198–1206.
Hudson, N., Baker, A., and Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters. River Res. Appl., 23, 631–649.
Kalle, K. (1949). Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meerbusen. Dtsch. Hydrogr. Z., 2, 117–124.
Klinkhammer, G.P. (1994). Fiber optic spectrometers for in-situ measurements in the oceans: The ZAPS probe. Mar. Chem., 47, 13–20.
Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. New York: Springer Science+Business Media, 954 pp.
Langebrake, L.C., Lembke, C.E., Weisberg, R.H., Byrne, R.H., Russell, D.R., Tilbury, G., and Carr, R. (2002). Design and initial results of a bottom stationing ocean profiler. IEEE, 1, 98–103.
Lee Z., Carder, K.L., Hawes, S.K., Steward, R.G., Peacock, T.G., and Davis, C.O. (1994). Model for the interpretation of hyperspectral remote-sensing reflectance. Appl. Optics, 33(24), 5721–5732.
Lieberman, S.H., Inman, S.M., and Theriault, G.A. (1992). Laser-induced fluorescence over optical fibers for real-time in situ measurement of petroleum hydrocarbons in seawater. In Proceedings of Oceans ’91, pp. 507–514. Oceanic Engineering Society of IEEE, 91CH 3063–5.
Lochmuller, C.H. and Saavedra, S.S. (1986). Conformational changes in a soil fulvic acid measured by time-dependent fluorescence depolarization. Anal. Chem., 58, 1978–1981.
Lorenzen, C.J. (1966). A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res., 1(2), 223–227.v
Macleod, H.A. (2001). Thin-film optical filters, 3rd ed. London: Institute of Physics Publishing, 668 pp.
Manov, D.V., Chang, G.C., and Dickey, T.D. (2003). Methods for reducing biofouling of moored optical sensors. J. Atmos. Ocean. Technol., 21, 958.
Mazel, C.H. (1997) Coral fluorescence characteristics: Excitation–emission spectra, fluorescence efficiencies, and contribution to apparent reflectance. In Proceedings of Ocean Optics XIII Conference, SPIE 2963, 240–245.
McLean, S., Schofield, B., Zibordi, G., Lewis, M., Hooker, S., and Weidemann, A. (1997). Field evaluation of anti-biofouling compounds on optical instrumentation. Proc. SPIE, 2963, 708–713.
Moore, C.M. (1994). In situ biochemical, oceanic optical meters: Spectral absorption, attenuation, fluorescence meters – a new window of opportunity for ocean scientists. Sea Technol., 35, 10–16.
Peacock, T.G., Carder, K.L., Davis, C.O., and Steward, R.G. (1990). Effects of fluorescence and water Raman scattering on models of remote-sensing reflectance. In R.W. Spinrad (Ed.), Ocean Optics X, Proc. Soc. Photo-Opt. Instrum. Eng. 1302, 303–319.
Robinson, A.R. and Glenn, S.M. (1999). Adaptive sampling for ocean forecasting. Nav. Res. Rev., 51, 26–38.
Rudnick, S.M., Chen, R.F., and Gardner, G.B. (1998). In situ, time-resolved fluorescence measurements in Boston Harbor. In Ocean Sciences ’98, San Diego, February 1998.
Saraceno, J.F., Pellerin, B.A., Downing, B.D., Boss, E., Bachand, P.A.M., and Bergamaschi, B.A. (2009). High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. J. Geophys. Res., 114, doi:10.1029/2009JG000989.
Sivaprakasam, V., Shannon, R.F., Jr., Luo, C., Coble, P.G., Boehme, J.R., and Killinger, D.K. (2003). Development and initial calibration of a portable laser-induced fluorescence system used for in situ measurements of trace plastics and dissolved organic compounds in seawater and the Gulf of Mexico. Appl. Optics, 42, 6747–6756.
Spitzer, D. and Dirks, R.W.J. (1985). Contamination of the reflectance of natural waters by solar-induced fluorescence of dissolved organic matter. Appl. Optics, 24(4), 444–445.
Stoertz, G.E., Hemphill, W.R., and Markle, D.A. (1969). Airborne fluorometer applicable to marine and estuarine studies. Mar. Technol. Sci. J., 3, 11–26.
Tedetti, M., Guigue, C., and Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal water. Mar. Poll. Bull., 60, 350–362.
Twardowski, M.S., Sullivan, J.M., Donaghay, P.L., and Zaneveld, J.R.V. (1999). Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. J. Atmos. Ocean. Technol., 16(12):691–707.
Twardowski, M.S., Lewis, M.R., Barnard, A.H., and Zaneveld, J.R.V. (2005). In-water instrumentation and platforms for ocean color remote sensing applications. In: R.L. Miller, C.E. Del Castillo, and B.A. McKee (Eds.), Remote Sensing of Coastal Aquatic Environments, pp. 69–93. Dordrecht, the Netherlands: Springer Science+Business Media.
Vodacek, A., Green, S.A., and Blough, N.V. (1994). An experimental model of the solar-induced fluorescence of chromophoric dissolved organic matter. Limnol. Oceanogr., 39, 1–11.
Yuan, J., Dagg, M., and Del Castillo, C.E. (2005). In pixel variations of chl a fluorescence in northern Gulf of Mexico and their implications for calibrating remotely sensed chl a and other products. Cont. Shelf Res., 25(15), 1894–1904
Zhou, J., Tonizzo, A., Ioannou, I., Hlaing, S., Gilerson, A., Gross, B., Moshary, F., and Ahmed, S. (2009). Evaluation of solar estimulated CDOM fluorescence and its impact on the closure of remote sensing reflectance. In R.J. Frouin (Ed.), Ocean Remote Sensing Methods. SPIE 7459, doi:10.1117/12.825374.