- Print publication year: 2019
- Online publication date: May 2019

- Publisher: Cambridge University Press
- DOI: https://doi.org/10.1017/9781108635660.015
- pp 227-233

Ahmed, I., Sutton, A. J. and Riley, R. (2011). Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: a database survey. BMJ, 344, d7762.

Allison, P. D. (2001). Missing Data. Thousand Oaks, CA: Sage.

Atkinson, A. C. (1986). Masking unmasked. Biometrika, 73, 533–541.

Audigier, V., White, I. R., Jolani, S., et al. (2017). Multiple imputation for multilevel data with continuous and binary variables. https://arxiv.org/abs/1702.00971

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. New York: Wiley.

Browne, W. J. and Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 3, 473–514.

Bryk, A. S. and Raudenbush, S. W. (1992). Hierarchical Linear Models. Newbury Park, CA: Sage.

Burke, D. L., Ensor, J. and Riley, R. D. (2017). Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Statistics in Medicine, 36, 855–875.

Cleves, M. A., Gould, W. W., Gutierrez, R. G. and Marchenko, Y. V. (2010). An Introduction to Survival Analysis Using Stata, 3rd edn. College Station, TX: Stata Press.

Cornell, J. E., Mulrow, C. D., Localio, R., et al. (2014). Random-effects meta-analysis of inconsistent effects: a time for change. Annals of Internal Medicine, 160, 267–270.

Crouchley, R. and Davies, R. B. (2001). A comparison of GEE and random coefficient models for distinguishing heterogeneity, nonstationarity and state dependence in a collection of short binary event series. Statistical Modelling, 1, 271–285.

Curran, P. J. and Bauer, D. J. (2001). The disaggregation of within-Person and between-Person effects in longitudinal models of change. Annual Review of Psychology, 62, 583–619.

Debray, T. P. A., Moons, K. G. M., van Valkenhoef, G., et al. and the GetReal Methods Review Group (2015). Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Research Synthesis Methods, 6, 293–309.

Demidenko, E. (2013). Mixed Models: Theory and Applications with R, 2nd edn. Hoboken, NJ: Wiley.

Diez Roux, A. V. (2002). A glossary for multilevel analysis. Journal of Epidemiology and Community Health, 56, 588–594.

Donders, A., van der Heiden, G., Stijnen, T. and Moons, K. (2012). Review: a gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59, 1087–1091.

Duncan, T., Duncan, S., Stryker, L., Li, F. and Alpert, A. (Eds.). (1999). An Introduction to Latent Variable Modelling: Concepts, Issues and Applications. Mahwah, NJ: Lawrence Erlbaum Associates.

Engel, B. (1998). A simple illustration of the failure of PQL, IRREML and AHPL as approximate ML methods for mixed models for binary data. Biometrical Journal, 40, 141–154.

Fisher, D. J., Copas, A. J., Tierney, J. F. and Parmar, M. K. B. (2011). A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners. Journal of Clinical Epidemiology, 64, 949–967.

Galecki, A. and Burzykowski, T. (2013). Linear Mixed-Effects Models Using R: A Step-by-Step Approach. New York: Springer Texts in Statistics.

Gardner, W., Mulvey, E. P. and Shaw, E. C. (1995). Regression analyses of counts and rates: Poisson, overdispersed Poisson and negative binomial models. Psychological Bulletin, 118, 392–404.

Gelwin, A. (2006). Prior distribution for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 3, 513–534.

Ghith, N., Wagner, P., Frølich, A. and Merlo, J. (2016). Short term survival after admission for heart failure in Sweden: applying multilevel analyses of discriminatory accuracy to evaluate institutional performance. PLoS One, 11(2), e0148187.

Goldstein, H. (1987). Multilevel Models in Educational and Social Research. London/New York: Griffin/Oxford University Press.

Goldstein, H. (1992). Statistical information and the measurement of education outcomes (editorial). Journal of the Royal Statistical Society, A, 155, 313–315.

Goldstein, H. (1995). Multilevel Statistical Models. London: Edward Arnold.

Goldstein, H. (2003). Multilevel Statistical Models, 3rd edn. London: Edward Arnold.

Goldstein, H. and Cuttance, P. (1988). A note on national assessment and school comparisons. Journal of Education Policy, 3, 197–202.

Goldstein, H. and Rasbash, J. (1996). Improved approximation for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 159, 505–513.

Greenland, S. (2000a). When should epidemiologic regressions use random coefficients? Biometrics, 56, 915–921.

Greenland, S. (2000b). Principles of multilevel modelling. International Journal of Epidemiology, 29, 158–167.

Hedeker, D., Gibbons, R. D. and Waternaux, C. (1999). Sample size estimation for longitudinal designs with attrition: comparing time-related contrasts between groups. Journal of Education and Behavioral Statistics, 24, 70–93.

Heo, M. and Leon, A. C. (2005). Comparison of statistical methods for analysis of clustered binary outcomes. Statistics in Medicine, 24, 911–923.

Higgins, J. P. T., Whitehead, A., Turner, R. M., Omar, R. Z. and Thompson, S. G. (2001). Meta-analysis of continuous outcome data from individual patients. Statistics in Medicine, 20, 2219–2241.

Hox, J. J. (2002). Multilevel Analysis: Techniques and Applications. Mahwah, NJ: Lawrence Erlbaum Associates.

Hu, F. B., Goldberg, J., Hedeker, D., Flay, B. R. and Pentz, M. A. (1998). Comparison of population-averaged and subject specific approaches for analyzing repeated measures binary outcomes. American Journal of Epidemiology, 147, 694–703.

Hutchinson, M. K. and Holtman, M. C. (2005). Analysis of count data using poisson regression. Research in Nursing & Health, 28, 408–418.

Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. New York: Springer-Verlag.

Jiang, J. (2016). Robust Mixed Model Analysis. World Scientific Publishing Co.

Jolani, S., Debray, T. P. A., Koffijberg, H., van Buuren, S. and Moons, K. G. M. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistics in Medicine, 34, 1841–1863.

Jöreskog, K. G. and Sörbom, D. (2001). LISREL 8.5. Chicago, IL: Scientific Software International.

Jung, S. H., Kang, S. H. and Ahn, C. (2001). Sample size calculations for clustered binary data. Statistics in Medicine, 20, 1971–1982.

Kenward, M. G. and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.

Korff, , , M., Koepsell, T., Curry, S. and Diehr, P. (1992). Multilevel analysis in epidemiologic research on health behaviors and outcomes. American Journal of Epidemiology, 135, 1077–1082.

Kreft, I. and De Leeuw, J. (1998). Introducing Multilevel Modelling. London: Sage.

Lambert, P. C. and Royston, P. (2009). Further development of flexible parametric models for survival analysis. Stata Journal, 9, 265–290.

Langford, I. H. and Lewis, T. (1998). Outliers in multilevel models (with discussion). Journal of the Royal Statistical Society, A, 161, 121–160.

Larsen, K., Petersen, J. H., Budtz-Jorgensen, E. and Endahl, L. (2000). Interpreting parameters in the logistic regression model with random effects. Biometrics, 56, 909–914.

Lawrence, A. J. (1995). Deletion, influence and masking in regression. Journal of the Royal Statistical Society, B, 57, 181–189.

Lee, E. W. and Durbin, N. (1994). Estimation and sample size considerations for clustered binary responses. Statistics in Medicine, 13, 1241–1252.

Lesaffre, E. and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50, 325–335.

Leyland, A. H. and Groenewegen, P. P. (2003). Multilevel modelling and public health policy. Scandinavian Journal of Public Health, 31, 267–274.

Liang, K.-Y. and Zeger, S. L. (1993). Regression analysis for correlated data. Annual Review of Public Health, 14, 43–68.

Lin, X. (1997). Variance component testing in generalised linear models with random effects. Biometrika, 84, 309–325.

Lipsitz, S. R., Laird, N. M. and Harrington, D. P. (1991). Generalized estimating equations for correlated binary data: using the odds ratio as a measure of association. Biometrika, 78, 153–160.

Littel, R. C., Pendergast, J. and Natarajan, R. (2000). Modelling covariance structures in the analysis of repeated measures data. Statistics in Medicine, 19, 1793–1819.

Little, R. J. A. (1995). Modelling the drop-out mechanism repeated measures studies. Journal of the American Statistical Association, 90, 1112–1121.

Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley.

Little, T. D., Schabel, K. U. and Baumert, J. (Eds.). (2000). Modeling Longitudinal and Multilevel Data. Practical Issues, Applied Approaches, and Specific Examples. Mahwah, NJ: Lawrence Erlbaum Associates.

Liu, G. and Liang, K.-Y. (1997). Sample size calculations for studies with correlated observations. Biometrics, 53, 937–947.

Liu, Q. and Pierce, D. A. (1994). A note on Gauss-Hermite quadrature. Biometrika, 81, 624–629.

Livert, D., Rindskopf, D., Saxe, L. and Stirratt, M. (2001). Using multilevel modelling in the evaluation of community-based treatment programs. Multivariate Behavioral Research, 36, 155–183.

Ludtke, O., Marsh, H., Robitzsch, A., et al. (2008). The multilevel latent covariate model: a new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13, 203–229.

McCullagh, P. and Searle, S. R. (2001). Generalized, Linear and Mixed Models. New York: Wiley.

Merlo, J. (2003). Multilevel analytical approaches in social epidemiology: measures of health variation compared with traditional measures of association. Journal of Epidemiology and Community Health, 57, 550–552.

Moerbeek, M., Breukelen van, G. J. P. and Berger, M. P. F. (2000). Design issues for multilevel experiments. Journal of Educational and Behavioral Statistics, 25, 271–284.

Moerbeek, M., Breukelen van, G. J. P. and Berger, M. P. F. (2001). Optimal experimental designs for multilevel logistic models. The Statistician, 50, 17–30.

Moerbeek, M., van Breukelen, G. J. P. and Berger, M. P .F. (2003a). A comparison of estimation methods for multilevel logistic models. Computational Statistics, 18, 19–37.

Moerbeek, M., van Breukelen, G. J. P., Ausems, M. and Berger, M. P. F. (2003b). Optimal sample sizes in experimental designs with individuals nested within clusters. Understanding Statistics, 2, 151–175.

Morrell, C. H. (1998). Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood. Biometrics, 54, 1560–1568.

Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.

Nelder, J. A. and Lee, Y. (1992). Likelihood, Quasi-likelihood and Pseudolikelihood: some comparisons. Journal of the Royal Statistical Society, B, 54, 273–284.

Neuhaus, J. M., Kalbfleisch, J. D. and Hauck, W. W. (1991). A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Reviews, 59, 25–36.

Neuhaus, J. M. and Lesparance, M. L. (1996). Estimation efficiency in a binary mixed-effects model setting. Biometrika, 83, 441–446.

Nuttall, D. L., Goldstein, H., Prosser, R. and Rasbash, J. (1989). Differential school effectiveness. International Journal of Educational Research, 13, 769–776.

Oehlert, G. W. (2012). A few words about REML. *Stat 5303*, 1–11.

Omar, R. Z., Wright, E. M., Turner, R. M. and Thompson, S. G. (1999). Analyzing repeated measurements data: a practical comparison of methods. Statistics in Medicine, 18, 1587–1603.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag.

Plewis, I. (1991). Using multilevel models to link educational progress with curriculum coverage. In Schools, Classrooms and Pupils. International Studies of Schooling from a Multilevel Perspective, ed. Raudenbush, S. W. and Willms, J. D., San Diego: Academic Press.

Plewis, I. and Hurry, J. (1998). A multilevel perspective on the design and analysis of intervention studies. Educational Research and Evaluation, 4, 13–26.

Rabe-Hesketh, S. and Pickles, A. (1999). Generalised linear latent and mixed models. In Proceedings of the 14th International Workshop on Statistical Modelling, ed. Friedl, H., Bughold, A. and Kauermann, G., pp. 332–339. Graz, Austria: TU Graz Press.

Rabe-Hesketh, S., Pickles, A. and Taylor, C. (2000). sg129: generalized linear latent and mixed models. Stata Technical Bulletin, 53, 47–57.

Rabe-Hesketh, S., Pickles, A. and Skrondal, A. (2001a). GLAMM Manual Technical Report 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, King’s College, University of London.

Rabe-Hesketh, S., Pickles, A. and Skrondal, A. (2001b). GLLAMM: a class of models and a Stata program. Multilevel Modelling Newsletter, 13, 17–23.

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1–21.

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004). *GLLAMM Manual*. U.C. Berekely Division of Biostatistics Working Paper Series, paper 160, www.bepres.com/ucbbiostat/paper160.

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.

Raudenbush, S. W. and Bryk, A. S. (2002). Hierarchical Linear Models. Applications and Data Analysis Methods. Thousand Oaks, CA: Sage.

Reise, S. P. and Duan, N. (2003). Multilevel Modelling Methodological Advances, Issues, and Applications. Mahwah, NJ: Lawrence Erlbaum Associates.

Rice, N. and Leyland, A. (1996). Multilevel models: applications to health data. Journal of Health Services Research Policy, 1, 154–164.

Riley, R. D., Lambert, P. C. and Abo-Zaid, G. (2010). Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ, 340, c221.

Rodriguez, G. and Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Association, 158, 73–89.

Rodriguez, G. and Goldman, N. (1997). Multilevel models with binary response: a comparison of estimation procedures. Journal of the Royal Statistical Society, A, 158, 73–89.

Rodriguez, G. and Goldman, N. (2001). Improved estimation procedures for multilevel models with binary responses: a case study. Journal of the Royal Statistical Association, 164, 339–355.

Royston, P. and Lambert, P. C. (2011). Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model. College Station, TX: Stata Press.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473–489.

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. New York: Chapman & Hall.

Schafer, J. L. (1999). Multiple imputation: a primer. Statistical Methods in Medical Research, 8, 3–15.

Schüle, S. A., von Kries, R., Fromme, H. and Bolte, G. (2016). Neighbourhood socioeconomic context, individual socioeconomic position, and overweight in young children: a multilevel study in a large German city. BMC Obesity, 3, 25.

Shih, W. J. and Quan, H. (1997). Testing for treatment differences with dropouts present in clinical trials – a composite approach. Statistics in Medicine, 16, 1225–1239.

Simmonds, M. C., Higgins, J. P. T., Stewart, L. A., et al. (2005). Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clinical Trials, 2, 209–217.

Simmonds, M., Stewart, G. and Stewart, L. (2015). A decade of individual participant data meta-analyses: a review of current practice. Contemporary Clinical Trials, 45, 76–83.

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC Press.

Snijders, T. A. B. and Bosker, R. J. (1993). Standard errors and sample sizes for two-level research. Journal of Educational Statistics, 18, 237–259.

Snijders, T. A. B. and Bosker, R. J. (1999). Multilevel Analysis. An Introduction to Basic and Advanced Multilevel Modelling. London: Sage.

Sterne, J. A. C., White, I. A., Carlin, J. B., et al. (2009). Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ, 338, b2393.

Stewart, L. A. and Parmar, M. K. B. (1993). Meta-analysis of the literature or of individual patient data: is there a difference? Lancet, 341, 418–422.

Steyerberg, E. W. (2009). Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York: Springer-Verlag.

Ten Have, T. R., Ratcliffe, S. J., Reboussin, B. A. and Miller, M. E. (2004). Deviations from the population-averaged cluster-specific relationship for clustered binary data. Statistical Methods in Medical Research, 13, 3–16.

Twisk, J. W. R. (2004). Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. European Journal of Epidemiology, 19, 769–776.

Twisk, J. W. R. (2013). Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide, 2nd edn. Cambridge: Cambridge University Press.

Twisk, J., de Boer, M., de Vente, W. and Heymans, M. (2013). Multiple imputation of missing values was not necessary before performing a longitudinal mixed-model analysis. Journal of Clinical Epidemiology, 66, 1022–1028.

Twisk, J. W. R. and Proper, K. (2004). Evaluation of the results of a randomized controlled trial: how to define changes between baseline and follow-up. Journal of Clinical Epidemiology, 57, 223–228.

Twisk, J. W. R. and de Vente, W. (2002). Attrition in longitudinal studies: how to deal with missing data. Journal of Clinical Epidemiology, 55, 329–337.

Twisk, J. W. R., de Vente, W., Apeldoorn, A. T. and Boer, M. R. de (2017). Should we use logistic mixed model analysis for the effect estimation in a longitudinal RCT with a dichotomous outcome variable. Epidemiology, Biostatistics and Public Health, 14, 3.

Weaver, C. G., Ravani, P., Oliver, M. J., Austin, P. C. and Quinn, R. R. (2015). Analyzing hospitalisation data: potential limitations of Poisson regression. Nephrology Dialysis Transplantation, 30, 1244–1249.

West, B. T., Welch, K. B. and Galecki, A. T. (2015). Linear Mixed Models: A Practical Guide Using Statistical Software, 2nd edn. Boca Raton, FL: CRC Press.

Woodhouse, G. and Goldstein, H. (1989). Educational Performance Indicators and LEA league tables. Oxford Review of Education, 14, 301–319.

Zeger, S. L. and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130.

Zeger, S. L. and Liang, K.-Y. (1992). An overview of methods for the analysis of longitudinal data. Statistics in Medicine, 11, 1825–1839.

Zheng, X. and Rabe-Hesketh, S. (2007). Estimating parameters of dichotomous and ordinal item response models with gllamm. The Stata Journal, 3, 313–333.