Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T22:55:04.920Z Has data issue: false hasContentIssue false

9 - Ceramide and Lipid Mediators in Apoptosis

from Part I - General Principles of Cell Death

Published online by Cambridge University Press:  07 September 2011

Douglas R. Green
Affiliation:
St. Jude Children's Research Hospital, Memphis, Tennessee
Thomas D. Mullen
Affiliation:
Medical University of South Carolina
Russell W. Jenkins
Affiliation:
Medical University of South Carolina
Lina M. Obeid
Affiliation:
Medical University of South Carolina
Yusuf A. Hannun
Affiliation:
Medical University of South Carolina
John C. Reed
Affiliation:
Sanford-Burnham Medical Research Institute, La Jolla, California
Get access

Summary

Introduction

As a cellular signaling program, apoptosis is a highly controlled and complex process that depends on the orchestrated interactions of multiple soluble factors: ions (e.g., Ca2+), proteins (e.g., caspases, Bcl-2 family members), and nonprotein substrates (e.g., DNA). Equally important, although less well characterized, is signaling through cellular membranes and the lipids and proteins contained therein. Lipids are the primary constituents of biological membranes and thus play a structural role in defining cellular and organellar boundaries. However, lipids are not merely passive molecules serving inert, structural functions in these membranes. Many lipids are now appreciated as signaling molecules, capable of influencing diverse cellular processes and exerting powerful influence over many physiologic and pathophysiologic processes, such as programmed cell death. Sphingolipids represent one class of bioactive lipid mediators that are now recognized as key determinants of cell fate. This chapter discusses the regulated generation of bioactive sphingolipids (e.g., ceramide) and how sphingolipid signaling impacts the regulation of programmed cell death.

Type
Chapter
Information
Apoptosis
Physiology and Pathology
, pp. 88 - 105
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×