Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:37:07.571Z Has data issue: false hasContentIssue false

26 - Cell Death in the Cardiovascular System

from Part II - Cell Death in Tissues and Organs

Published online by Cambridge University Press:  07 September 2011

Douglas R. Green
Affiliation:
St. Jude Children's Research Hospital, Memphis, Tennessee
Vladimir Kaplinskiy
Affiliation:
Albert Einstein College of Medicine
Martin R. Bennett
Affiliation:
Addenbrooke’s Hospital, UK
Richard N. Kitsis
Affiliation:
Albert Einstein College of Medicine
John C. Reed
Affiliation:
Sanford-Burnham Medical Research Institute, La Jolla, California
Get access

Summary

Introduction

Cardiovascular disease is the most common cause of death in the world. Regulated forms of cell death play critical roles in cardiovascular disease. In particular, apoptosis and necrosis, and perhaps autophagic cell death, are causal components in the pathogenesis of the most common and lethal cardiovascular syndromes: myocardial infarction and heart failure. This chapter summarizes the mechanisms and physiologic impact of regulated cell death in the cardiovascular system.

Type
Chapter
Information
Apoptosis
Physiology and Pathology
, pp. 295 - 312
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Imamura, S, Nishikawa, T, Hiratsuka, E, Takao, A, Matsuoka, R. Behavior of smooth muscle cells during arterial ductal closure at birth. J Histochem Cytochem. 2000;48(1):35–44.
Tananari, Y, Maeno, Y, Takagishi, T, Sasaguri, Y, Morimatsu, M, Kato, H. Role of apoptosis in the closure of neonatal ductus arteriosus. Jpn Circ J. 2000;64(9):684–8.
Kim, HS, Hwang, KK, Seo, JW, Kim, SY, Oh, BH, Lee, MM, Park, YB. Apoptosis and regulation of Bax and Bcl-X proteins during human neonatal vascular remodeling. Arterioscler Thromb Vasc Biol. 2000;20(4):957–63.
Cho, A, Courtman, DW, Langille, BL. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res. 1995;76(2):168–75.
Hou, Y, Li, F, Karin, M, Ostrowski, MC. Analysis of the IKKbeta/NF-kappaB signaling pathway during embryonic angiogenesis. Dev Dyn. 2008;237(10):2926–35.
Wang, S, Sorenson, CM, Sheibani, N. Attenuation of retinal vascular development and neovascularization during oxygen-induced ischemic retinopathy in Bcl-2-/- mice. Dev Biol. 2005;279(1):205–19.
Hahn, P, Lindsten, T, Tolentino, M, Thompson, CB, Bennett, J, Dunaief, JL. Persistent fetal ocular vasculature in mice deficient in bax and bak. Arch Ophthalmol. 2005;123(6):797–802.
Fisher, SA, Langille, BL, Srivastava, D. Apoptosis during cardiovascular development. Circ Res. 2000;87(10):856–64.
Lobov, IB, Rao, S, Carroll, TJ, Vallance, JE, Ito, M, Ondr, JK, Kurup, S, Glass, DA, Patel, MS, Shu, W, Morrisey, EE, McMahon, AP, Karsenty, G, Lang, RA. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature. 2005;437(7057):417–21.
Meeson, A, Palmer, M, Calfon, M, Lang, R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development. 1996;122(12):3929–38.
Meeson, AP, Argilla, M, Ko, K, Witte, L, Lang, RA. VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development. 1999;126(7):1407–15.
Cho, A, Mitchell, L, Koopmans, D, Langille, BL. Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ Res. 1997;81(3):328–37.
Harmon, KJ, Couper, LL, Lindner, V. Strain-dependent vascular remodeling phenotypes in inbred mice. Am J Pathol. 2000;156(5):1741–8.
Virmani, R, Kolodgie, FD, Burke, AP, Farb, A, Schwartz, SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.
Libby, P. Changing concepts of atherogenesis. J Intern Med. 2000;247(3):349–58.
Davies, MJ. Acute coronary thrombosis: the role of plaque disruption and its initiation and prevention. Eur Heart J. 1995;16 Suppl L:3–7.
Virmani, R, Burke, AP, Farb, A. Plaque rupture and plaque erosion. Thromb Haemost. 1999;82 Suppl 1:1–3.
Lutgens, E, de Muinck, ED, Kitslaar, PJ, Tordoir, JH, Wellens, HJ, Daemen, MJ. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res. 1999;41(2):473–9.
Geng, YJ, Libby, P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995;147(2):251–66.
Isner, JM, Kearney, M, Bortman, S, Passeri, J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995;91(11):2703–11.
Bennett, MR, Evan, GI, Schwartz, SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995;95(5):2266–74.
Clarke, MC, Littlewood, TD, Figg, N, Maguire, JJ, Davenport, AP, Goddard, M, Bennett, MR. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res. 2008;102(12):1529–38.
Clarke, MC, Talib, S, Figg, NL, Bennett, MR. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res.106(2):363–72.
Burke, AP, Farb, A, Malcom, GT, Liang, YH, Smialek, J, Virmani, R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–82.
Fuster, V. Elucidation of the role of plaque instability and rupture in acute coronary events. Am J Cardiol. 1995;76(9):24C–33C.
Bauriedel, G, Hutter, R, Welsch, U, Bach, R, Sievert, H, Luderitz, B. Role of smooth muscle cell death in advanced coronary primary lesions: implications for plaque instability. Cardiovasc Res. 1999;41(2):480–8.
Clarke, MC, Figg, N, Maguire, JJ, Davenport, AP, Goddard, M, Littlewood, TD, Bennett, MR. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med. 2006;12(9):1075–80.
Stoneman, V, Braganza, D, Figg, N, Mercer, J, Lang, R, Goddard, M, Bennett, M. Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res. 2007;100(6):884–93.
Liu, J, Thewke, DP, Su, YR, Linton, MF, Fazio, S, Sinensky, MS. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol. 2005;25(1):174–9.
Thorp, E, Li, Y, Bao, L, Yao, PM, Kuriakose, G, Rong, J, Fisher, EA, Tabas, I. Brief report: increased apoptosis in advanced atherosclerotic lesions of Apoe-/- mice lacking macrophage Bcl-2. Arterioscler Thromb Vasc Biol. 2009;29(2):169–72.
Ait-Oufella, H, Kinugawa, K, Zoll, J, Simon, T, Boddaert, J, Heeneman, S, Blanc-Brude, O, Barateau, V, Potteaux, S, Merval, R, Esposito, B, Teissier, E, Daemen, MJ, Leseche, G, Boulanger, C, Tedgui, A, Mallat, Z. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 2007;115(16):2168–77.
Ait-Oufella, H, Pouresmail, V, Simon, T, Blanc-Brude, O, Kinugawa, K, Merval, R, Offenstadt, G, Leseche, G, Cohen, PL, Tedgui, A, Mallat, Z. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(8):1429–31.
Thorp, E, Cui, D, Schrijvers, DM, Kuriakose, G, Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler Thromb Vasc Biol. 2008;28(8):1421–8.
Schrijvers, DM, De Meyer, GR, Kockx, MM, Herman, AG, Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(6):1256–61.
Minamino, T, Kitakaze, M. ER stress in cardiovascular disease. . 2010;48(6):1105–10.
Feng, B, Yao, PM, Li, Y, Devlin, CM, Zhang, D, Harding, HP, Sweeney, M, Rong, JX, Kuriakose, G, Fisher, EA, Marks, AR, Ron, D, Tabas, I. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003;5(9):781–92.
Zhou, J, Lhotak, S, Hilditch, BA, Austin, RC. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation. 2005;111(14):1814–21.
Thorp, E, Li, G, Seimon, TA, Kuriakose, G, Ron, D, Tabas, I. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP. Cell Metab. 2009;9(5):474–81.
Myoishi, M, Hao, H, Minamino, T, Watanabe, K, Nishihira, K, Hatakeyama, K, Asada, Y, Okada, K, Ishibashi-Ueda, H, Gabbiani, G, Bochaton-Piallat, ML, Mochizuki, N, Kitakaze, M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116(11):1226–33.
Chan, SW, Hegyi, L, Scott, S, Cary, NR, Weissberg, PL, Bennett, MR. Sensitivity to Fas-mediated apoptosis is determined below receptor level in human vascular smooth muscle cells. Circ Res. 2000;86(10):1038–46.
Sata, M, Suhara, T, Walsh, K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol. 2000;20(2):309–16.
Sata, M, Walsh, K. TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med. 1998;4(4):415–20.
Rosner, D, Stoneman, V, Littlewood, T, McCarthy, N, Figg, N, Wang, Y, Tellides, G, Bennett, M. Interferon-gamma induces Fas trafficking and sensitization to apoptosis in vascular smooth muscle cells via a PI3K- and Akt-dependent mechanism. Am J Pathol. 2006;168(6):2054–63.
Boyle, JJ, Weissberg, PL, Bennett, MR. Human macrophage-induced vascular smooth muscle cell apoptosis requires NO enhancement of Fas/Fas-L interactions. Arterioscler Thromb Vasc Biol. 2002;22(10):1624–30.
Bennett, M, Macdonald, K, Chan, SW, Luzio, JP, Simari, R, Weissberg, P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science. 1998;282(5387):290–3.
Ikeda, K, Nakano, R, Uraoka, M, Nakagawa, Y, Koide, M, Katsume, A, Minamino, K, Yamada, E, Yamada, H, Quertermous, T, Matsubara, H. Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2. Proc Natl Acad Sci U S A 2009;106(20):8227–32.
Nakajima, T, Schulte, S, Warrington, KJ, Kopecky, SL, Frye, RL, Goronzy, JJ, Weyand, CM. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002;105(5):570–5.
Pryshchep, S, Sato, K, Goronzy, JJ, Weyand, CM. T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. Circ Res. 2006;98(9):1168–76.
Sato, K, Niessner, A, Kopecky, SL, Frye, RL, Goronzy, JJ, Weyand, CM. TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med. 2006;203(1):239–50.
Boyle, JJ, Bowyer, DE, Weissberg, PL, Bennett, MR. Human blood-derived macrophages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas-ligand/Fas interactions. Arterioscler Thromb Vasc Biol. 2001;21(9):1402–7.
Bennett, MR, Littlewood, TD, Schwartz, SM, Weissberg, PL. Increased sensitivity of human vascular smooth muscle cells from atherosclerotic plaques to p53-mediated apoptosis. Circ Res. 1997;81(4):591–9.
Kavurma, MM, Figg, N, Bennett, MR, Mercer, J, Khachigian, LM, Littlewood, TD. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochem J. 2007;407(1):79–87.
Patel, VA, Zhang, QJ, Siddle, K, Soos, MA, Goddard, M, Weissberg, PL, Bennett, MR. Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling. Circ Res. 2001;88(9):895–902.
Yu, L, Alva, A, Su, H, Dutt, P, Freundt, E, Welsh, S, Baehrecke, EH, Lenardo, MJ. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304(5676):1500–2.
Martinet, W, Schrijvers, DM, Herman, AG, De Meyer, GR. z-VAD-fmk-induced non-apoptotic cell death of macrophages: possibilities and limitations for atherosclerotic plaque stabilization. Autophagy. 2006;2(4):312–14.
Walter, DH, Haendeler, J, Galle, J, Zeiher, AM, Dimmeler, S. Cyclosporin A inhibits apoptosis of human endothelial cells by preventing release of cytochrome C from mitochondria. Circulation. 1998;98(12):1153–7.
Vindis, C, Elbaz, M, Escargueil-Blanc, I, Auge, N, Heniquez, A, Thiers, JC, Negre-Salvayre, A, Salvayre, R. Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis. Arterioscler Thromb Vasc Biol. 2005;25(3):639–45.
Reimer, KA, Jennings, RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40(6):633–44.
Yellon, DM, Hausenloy, DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.
Mueller, HS, Roberts, R, Teichman, SL, Sobel, BE. Thrombolytic therapy in acute myocardial infarction: Part I. Med Clin North Am. 1988;72(1):197–226.
Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group. Lancet. 1994;343(8893):311–22.
Gottlieb, RA, Burleson, KO, Kloner, RA, Babior, BM, Engler, RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94(4):1621–8.
Kajstura, J, Cheng, W, Reiss, K, Clark, WA, Sonnenblick, EH, Krajewski, S, Reed, JC, Olivetti, G, Anversa, P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 1996;74(1):86–107.
Jennings, RB, Sommers, HM, Smyth, GA, Flack, HA, Linn, H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.
Baines, CP, Kaiser, RA, Purcell, NH, Blair, NS, Osinska, H, Hambleton, MA, Brunskill, EW, Sayen, MR, Gottlieb, RA, Dorn, GW, Robbins, J, Molkentin, JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658–62.
Nakagawa, T, Shimizu, S, Watanabe, T, Yamaguchi, O, Otsu, K, Yamagata, H, Inohara, H, Kubo, T, Tsujimoto, Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652–8.
Matsui, Y, Takagi, H, Qu, X, Abdellatif, M, Sakoda, H, Asano, T, Levine, B, Sadoshima, J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.
Takagi, H, Matsui, Y, Hirotani, S, Sakoda, H, Asano, T, Sadoshima, J. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy. 2007;3(4):405–7.
Fliss, H, Gattinger, D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79(5):949–56.
Freude, B, Masters, TN, Robicsek, F, Fokin, A, Kostin, S, Zimmermann, R, Ullmann, C, Lorenz-Meyer, S, Schaper, J. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000;32(2):197–208.
Broughton, BR, Reutens, DC, Sobey, CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–39.
Abbate, A, Morales, C, De Falco, M, Fedele, V, Biondi Zoccai, GG, Santini, D, Palleiro, J, Vasaturo, F, Scarpa, S, Liuzzo, G, Severino, A, Baldi, F, Crea, F, Biasucci, LM, Vetrovec, GW, Gelpi, RJ, Baldi, A. Ischemia and apoptosis in an animal model of permanent infarct-related artery occlusion. Int J Cardiol. 2007;121(1):109–111.
Olivetti, G, Quaini, F, Sala, R, Lagrasta, C, Corradi, D, Bonacina, E, Gambert, SR, Cigola, E, Anversa, P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 1996;28(9):2005–16.
Scarabelli, T, Stephanou, A, Rayment, N, Pasini, E, Comini, L, Curello, S, Ferrari, R, Knight, R, Latchman, D. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation. 2001;104(3):253–56.
Potts, MB, Vaughn, AE, McDonough, H, Patterson, C, Deshmukh, M. Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol. 2005;171(6):925–30.
Sanchis, D, Mayorga, M, Ballester, M, Comella, JX. Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ. 2003;10(9):977–86.
Lee, P, Sata, M, Lefer, DJ, Factor, SM, Walsh, K, Kitsis, RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol. 2003;284(2):H456–63.
Jeremias, I, Kupatt, C, Martin-Villalba, A, Habazettl, H, Schenkel, J, Boekstegers, P, Debatin, KM. Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation. 2000;102(8):915–20.
Holler, N, Zaru, R, Micheau, O, Thome, M, Attinger, A, Valitutti, S, Bodmer, JL, Schneider, P, Seed, B, Tschopp, J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489–95.
Degterev, A, Huang, Z, Boyce, M, Li, Y, Jagtap, P, Mizushima, N, Cuny, GD, Mitchison, TJ, Moskowitz, MA, Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–19.
Kurrelmeyer, KM, Michael, LH, Baumgarten, G, Taffet, GE, Peschon, JJ, Sivasubramanian, N, Entman, ML, Mann, DL. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A. 2000;97(10):5456–61.
Burchfield, JS, Dong, JW, Sakata, Y, Gao, F, Tzeng, HP, Topkara, VK, Entman, ML, Sivasubramanian, N, Mann, DL. The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor-associated factor 2 in the heart. Circ Heart Fail. 2010;3(1):157–64.
Yu, X, Patterson, E, Huang, S, Garrett, MW, Kem, DC. Tumor necrosis factor alpha, rapid ventricular tachyarrhythmias, and infarct size in canine models of myocardial infarction. J Cardiovasc Pharmacol. 2005;45(2):153–9.
Gu, Q, Yang, XP, Bonde, P, DiPaula, A, Fox-Talbot, K, Becker, LC. Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J Cardiovasc Pharmacol. 2006;48(6):320–8.
Sugano, M, Tsuchida, K, Hata, T, Makino, N. In vivo transfer of soluble TNF-alpha receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB J. 2004;18(7):911–13.
Higuchi, Y, McTiernan, CF, Frye, CB, McGowan, BS, Chan, TO, Feldman, AM. Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation. 2004;109(15):1892–7.
Hamid, T, Gu, Y, Ortines, RV, Bhattacharya, C, Wang, G, Xuan, YT, Prabhu, SD. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 2009;119(10):1386–97.
Hochhauser, E, Cheporko, Y, Yasovich, N, Pinchas, L, Offen, D, Barhum, Y, Pannet, H, Tobar, A, Vidne, BA, Birk, E. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochem Biophys. 2007;47(1):11–20.
Hochhauser, E, Kivity, S, Offen, D, Maulik, N, Otani, H, Barhum, Y, Pannet, H, Shneyvays, V, Shainberg, A, Goldshtaub, V, Tobar, A, Vidne, BA. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol. 2003;284(6):H2351–9.
Wei, MC, Zong, WX, Cheng, EH, Lindsten, T, Panoutsakopoulou, V, Ross, AJ, Roth, KA, MacGregor, GR, Thompson, CB, Korsmeyer, SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727–30.
Brocheriou, V, Hagege, AA, Oubenaissa, A, Lambert, M, Mallet, VO, Duriez, M, Wassef, M, Kahn, A, Menasche, P, Gilgenkrantz, H. Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med. 2000;2(5):326–33.
Chen, Z, Chua, CC, Ho, YS, Hamdy, RC, Chua, BH. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol. 2001;280(5):H2313–20.
Oakes, SA, Scorrano, L, Opferman, JT, Bassik, MC, Nishino, M, Pozzan, T, Korsmeyer, SJ. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2005;102(1):105–10.
Scorrano, L, Oakes, SA, Opferman, JT, Cheng, EH, Sorcinelli, MD, Pozzan, T, Korsmeyer, SJ. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300(5616):135–9.
Hetz, C, Bernasconi, P, Fisher, J, Lee, AH, Bassik, MC, Antonsson, B, Brandt, GS, Iwakoshi, NN, Schinzel, A, Glimcher, LH, Korsmeyer, SJ. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science. 2006;312(5773):572–6.
Kim, H, Rafiuddin-Shah, M, Tu, HC, Jeffers, JR, Zambetti, GP, Hsieh, JJ, Cheng, EH. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 2006;8(12):1348–58.
Willis, SN, Fletcher, JI, Kaufmann, T, van Delft, MF, Chen, L, Czabotar, PE, Ierino, H, Lee, EF, Fairlie, WD, Bouillet, P, Strasser, A, Kluck, RM, Adams, JM, Huang, DC. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315(5813):856–9.
Peng, C-F, Lee, P, DeGuzman, A, Miao, W, Chandra, M, Shirani, J, Factor, S, Lefer, D, Condorelli, G, Ardati, A, Della Penna, K, Zinkel, S, Korsmeyer, SJ, Tremp, G, Zilberstein, A, Kitsis, RN. Multiple independent mutations in apoptotic signaling pathways markedly decrease infarct size due to myocardial ischemia-reperfusion. Circulation. 2001;104(Suppl II).
Chen, M, He, H, Zhan, S, Krajewski, S, Reed, JC, Gottlieb, RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem. 2001;276(33):30724–8.
Toth, A, Jeffers, JR, Nickson, P, Min, JY, Morgan, JP, Zambetti, GP, Erhardt, P. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006;291(1):H52–60.
Nam, YJ, Mani, K, Ashton, AW, Peng, CF, Krishnamurthy, B, Hayakawa, Y, Lee, P, Korsmeyer, SJ, Kitsis, RN. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell. 2004;15(6):901–12.
Foo, RS, Nam, YJ, Ostreicher, MJ, Metzl, MD, Whelan, RS, Peng, CF, Ashton, AW, Fu, W, Mani, K, Chin, SF, Provenzano, E, Ellis, I, Figg, N, Pinder, S, Bennett, MR, Caldas, C, Kitsis, RN. Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci U S A. 2007;104(52):20826–31.
Donath, S, Li, P, Willenbockel, C, Al-Saadi, N, Gross, V, Willnow, T, Bader, M, Martin, U, Bauersachs, J, Wollert, KC, Dietz, R, von Harsdorf, R. Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation. 2006;113(9):1203–12.
Nam, YJ, Mani, K, Wu, L, Peng, CF, Calvert, JW, Foo, RS, Krishnamurthy, B, Miao, W, Ashton, AW, Lefer, DJ, Kitsis, RN. The apoptosis inhibitor ARC undergoes ubiquitin-proteasomal-mediated degradation in response to death stimuli: identification of a degradation-resistant mutant. J Biol Chem. 2007;282(8):5522–8.
Foo, RS, Chan, LK, Kitsis, RN, Bennett, MR. Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem. 2007;282(8):5529–35.
Pyo, JO, Nah, J, Kim, HJ, Chang, JW, Song, YW, Yang, DK, Jo, DG, Kim, HR, Chae, HJ, Chae, SW, Hwang, SY, Kim, SJ, Kim, HJ, Cho, C, Oh, CG, Park, WJ, Jung, YK. Protection of cardiomyocytes from ischemic/hypoxic cell death via Drbp1 and pMe2GlyDH in cardio-specific ARC transgenic mice. J Biol Chem. 2008;283(45):30707–14.
Roy, N, Deveraux, QL, Takahashi, R, Salvesen, GS, Reed, JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 1997;16(23):6914–25.
Shiozaki, EN, Chai, J, Rigotti, DJ, Riedl, SJ, Li, P, Srinivasula, SM, Alnemri, ES, Fairman, R, Shi, Y. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11(2):519–27.
Choi, YE, Butterworth, M, Malladi, S, Duckett, CS, Cohen, GM, Bratton, SB. The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem. 2009;284(19):12772–82.
Ni, T, Li, W, Zou, F. The ubiquitin ligase ability of IAPs regulates apoptosis. IUBMB Life. 2005;57(12):779–85.
Chua, CC, Gao, J, Ho, YS, Xiong, Y, Xu, X, Chen, Z, Hamdy, RC, Chua, BH. Overexpression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochim Biophys Acta. 2007;1773(4):577–83.
Chan, FK, Shisler, J, Bixby, JG, Felices, M, Zheng, L, Appel, M, Orenstein, J, Moss, B, Lenardo, MJ. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003;278(51):51613–21.
Ea, CK, Deng, L, Xia, ZP, Pineda, G, Chen, ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22(2):245–57.
Mahoney, DJ, Cheung, HH, Mrad, RL, Plenchette, S, Simard, C, Enwere, E, Arora, V, Mak, TW, Lacasse, EC, Waring, J, Korneluk, RG. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A. 2008;105(33):11778–83.
Varfolomeev, E, Goncharov, T, Fedorova, AV, Dynek, JN, Zobel, K, Deshayes, K, Fairbrother, WJ, Vucic, D. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem. 2008;283(36):24295–9.
He, S, Wang, L, Miao, L, Wang, T, Du, F, Zhao, L, Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137(6):1100–11.
Cho, YS, Challa, S, Moquin, D, Genga, R, Ray, TD, Guildford, M, Chan, FK. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23.
Faccio, L, Fusco, C, Chen, A, Martinotti, S, Bonventre, JV, Zervos, AS. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem. 2000;275(4):2581–8.
Suzuki, Y, Imai, Y, Nakayama, H, Takahashi, K, Takio, K, Takahashi, R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8(3):613–21.
Yang, QH, Church-Hajduk, R, Ren, J, Newton, ML, Du, C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17(12):1487–96.
Liu, HR, Gao, E, Hu, A, Tao, L, Qu, Y, Most, P, Koch, WJ, Christopher, TA, Lopez, BL, Alnemri, ES, Zervos, AS, Ma, XL. Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation. 2005;111(1):90–6.
Bhuiyan, MS, Fukunaga, K. Inhibition of HtrA2/Omi ameliorates heart dysfunction following ischemia/reperfusion injury in rat heart in vivo. Eur J Pharmacol. 2007;557(2–3):168–77.
Yaoita, H, Ogawa, K, Maehara, K, Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation. 1998;97(3):276–81.
Holly, TA, Drincic, A, Byun, Y, Nakamura, S, Harris, K, Klocke, FJ, Cryns, VL. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol. 1999;31(9):1709–15.
Huang, JQ, Radinovic, S, Rezaiefar, P, Black, SC. In vivo myocardial infarct size reduction by a caspase inhibitor administered after the onset of ischemia. Eur J Pharmacol. 2000;402(1–2):139–42.
Yang, W, Guastella, J, Huang, JC, Wang, Y, Zhang, L, Xue, D, Tran, M, Woodward, R, Kasibhatla, S, Tseng, B, Drewe, J, Cai, SX. MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Br J Pharmacol. 2003;140(2):402–12.
Ricci, JE, Munoz-Pinedo, C, Fitzgerald, P, Bailly-Maitre, B, Perkins, GA, Yadava, N, Scheffler, IE, Ellisman, MH, Green, DR. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 2004;117(6):773–86.
Communal, C, Sumandea, M, de Tombe, P, Narula, J, Solaro, RJ, Hajjar, RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A. 2002;99(9):6252–6.
Halestrap, AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46(6):821–31.
Xu, K, Tavernarakis, N, Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron. 2001;31(6):957–71.
Schinzel, AC, Takeuchi, O, Huang, Z, Fisher, JK, Zhou, Z, Rubens, J, Hetz, C, Danial, NN, Moskowitz, MA, Korsmeyer, SJ. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A. 2005;102(34):12005–10.
Hall, DH, Gu, G, Garcia-Anoveros, J, Gong, L, Chalfie, M, Driscoll, M. Neuropathology of degenerative cell death in Caenorhabditis elegans. J Neurosci. 1997;17(3):1033–45.
Bianchi, L, Gerstbrein, B, Frokjaer-Jensen, C, Royal, DC, Mukherjee, G, Royal, MA, Xue, J, Schafer, WR, Driscoll, M. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci. 2004;7(12):1337–44.
Murphy, E, Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.
Degterev, A, Hitomi, J, Germscheid, M, Ch'en, IL, Korkina, O, Teng, X, Abbott, D, Cuny, GD, Yuan, C, Wagner, G, Hedrick, SM, Gerber, SA, Lugovskoy, A, Yuan, J. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21.
Lim, SY, Davidson, SM, Mocanu, MM, Yellon, DM, Smith, CC. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 2007;21(6):467–9.
Smith, CC, Davidson, SM, Lim, SY, Simpkin, JC, Hothersall, JS, Yellon, DM. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21(4):227–33.
Zhang, DW, Shao, J, Lin, J, Zhang, N, Lu, BJ, Lin, SC, Dong, MQ, Han, J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–6.
Mizushima, N, Levine, B, Cuervo, AM, Klionsky, DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.
Berry, DL, Baehrecke, EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 2007;131(6):1137–48.
Mudd, JO, Kass, DA. Tackling heart failure in the twenty-first century. Nature. 2008;451(7181):919–28.
Guerra, S, Leri, A, Wang, X, Finato, N, Di Loreto, C, Beltrami, CA, Kajstura, J, Anversa, P. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85(9):856–66.
Olivetti, G, Abbi, R, Quaini, F, Kajstura, J, Cheng, W, Nitahara, JA, Quaini, E, Di Loreto, C, Beltrami, CA, Krajewski, S, Reed, JC, Anversa, P. Apoptosis in the failing human heart. N Engl J Med. 1997;336(16):1131–41.
Saraste, A, Pulkki, K, Kallajoki, M, Heikkila, P, Laine, P, Mattila, S, Nieminen, MS, Parvinen, M, Voipio-Pulkki, LM. Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest. 1999;29(5):380–6.
Muzio, M, Stockwell, BR, Stennicke, HR, Salvesen, GS, Dixit, VM. An induced proximity model for caspase-8 activation. J Biol Chem. 1998;273(5):2926–30.
Spencer, DM, Wandless, TJ, Schreiber, SL, Crabtree, GR. Controlling signal transduction with synthetic ligands. Science. 1993;262(5136):1019–24.
Wencker, D, Chandra, M, Nguyen, K, Miao, W, Garantziotis, S, Factor, SM, Shirani, J, Armstrong, RC, Kitsis, RN. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111(10):1497–504.
D’Angelo, DD, Sakata, Y, Lorenz, JN, Boivin, GP, Walsh, RA, Liggett, SB, Dorn, GW, 2nd. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94(15):8121–6.
Yussman, MG, Toyokawa, T, Odley, A, Lynch, RA, Wu, G, Colbert, MC, Aronow, BJ, Lorenz, JN, Dorn, GW, 2nd. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 2002;8(7):725–30.
Adams, JW, Sakata, Y, Davis, MG, Sah, VP, Wang, Y, Liggett, SB, Chien, KR, Brown, JH, Dorn, GW, 2nd. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A. 1998;95(17):10140–5.
Hayakawa, Y, Chandra, M, Miao, W, Shirani, J, Brown, JH, Dorn, GW, 2nd, Armstrong RC, Kitsis RN. Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation. 2003;108(24):3036–41.
Hirota, H, Chen, J, Betz, UA, Rajewsky, K, Gu, Y, Ross, J., Muller, W, Chien, KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97(2):189–98.
Kostin, S, Pool, L, Elsasser, A, Hein, S, Drexler, HC, Arnon, E, Hayakawa, Y, Zimmermann, R, Bauer, E, Klovekorn, WP, Schaper, J. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92(7):715–24.
Nakayama, H, Chen, X, Baines, CP, Klevitsky, R, Zhang, X, Zhang, H, Jaleel, N, Chua, BH, Hewett, TE, Robbins, J, Houser, SR, Molkentin, JD. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117(9):2431–44.
Hein, S, Arnon, E, Kostin, S, Schonburg, M, Elsasser, A, Polyakova, V, Bauer, EP, Klovekorn, WP, Schaper, J. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.
Knaapen, MW, Davies, MJ, De Bie, M, Haven, AJ, Martinet, W, Kockx, MM. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res. 2001;51(2):304–12.
Nakai, A, Yamaguchi, O, Takeda, T, Higuchi, Y, Hikoso, S, Taniike, M, Omiya, S, Mizote, I, Matsumura, Y, Asahi, M, Nishida, K, Hori, M, Mizushima, N, Otsu, K. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–24.
Zhu, H, Tannous, P, Johnstone, JL, Kong, Y, Shelton, JM, Richardson, JA, Le, V, Levine, B, Rothermel, BA, Hill, JA. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117(7):1782–93.
Tannous, P, Zhu, H, Johnstone, JL, Shelton, JM, Rajasekaran, NS, Benjamin, IJ, Nguyen, L, Gerard, RD, Levine, B, Rothermel, BA, Hill, JA. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A. 2008;105(28):9745–50.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×