Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T02:36:28.571Z Has data issue: false hasContentIssue false

2 - Cytokine abnormalities in aplastic anemia

from Part I - Pathophysiology of acquired aplastic anemia

Published online by Cambridge University Press:  18 August 2009

Seiji Kojima
Affiliation:
Nagoya University School of Medicine, Japan
Hubert Schrezenmeier
Affiliation:
Freie Universität Berlin
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Get access

Summary

Introduction

The term aplastic anemia (AA) encompasses a group of stem-cell disorders characterized by peripheral-blood pancytopenia and hypocellular bone marrow. Although the exact mechanisms responsible for its pathogenesis are unknown, possible causes include a primary stem-cell defect, immune-mediated inhibition of hemopoiesis, and an abnormal bone marrow microenvironment (Camitta et al; 1982; Young and Maciejewski, 1997). Normal hemopoiesis is sustained by interactions between hemopoietic stem cells, cells of the bone marrow microenvironment, and cytokines produced by these cells. These cytokines are essential for the viability, proliferation, and differentiation of hemopoietic stem cells. In vitro evidence for the existence of a supporting microenvironment in hemopoiesis comes from the development of a long-term bone marrow culture (LTBMC) system (Dexter et al., 1977; Gartner and Kaplan, 1980). LTBMC is composed of confluent layers of marrow-adherent cells including fibroblasts, endothelial cells, adipocytes, and macrophages. LTBMC forms an in vitro model of the bone marrow microenvironment. Marrow stromal cells are thought to exert their regulatory role in hemopoiesis, at least in part, by the production of certain cytokines. Monolayer cultures of marrow-adherent cells have been shown to produce a variety of cytokines including granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and stem cell factor (SCF), either constitutively or after stimulation by interleukin-1 (IL-1) or tumor necrosis factor-α (TNF-α) (Kaushansky et al., 1988; Linenberger et al., 1995; Schadduk et al., 1983).

Several earlier studies showed elevated circulating levels of colony-stimulating activity in patients with AA (Nissen et al., 1985; Yen et al., 1985).

Type
Chapter
Information
Aplastic Anemia
Pathophysiology and Treatment
, pp. 21 - 40
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×