Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:52:55.502Z Has data issue: false hasContentIssue false

Chapter 3 - Geometric Enumeration Problems for Lattices and Embedded ℤ-Modules

Published online by Cambridge University Press:  26 October 2017

Michael Baake
Affiliation:
Fakultät für Mathematik Universität Bielefeld, Germany
Peter Zeiner
Affiliation:
Fakultät für Mathematik Universität Bielefeld, Germany
Michael Baake
Affiliation:
Universität Bielefeld, Germany
Uwe Grimm
Affiliation:
The Open University, Milton Keynes
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Aperiodic Order , pp. 73 - 172
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AO1] Baake, M. and Grimm, U. (2013) Aperiodic Order. Vol. 1: A Mathematical Invitation (Cambridge University Press, Cambridge).
[1] Akhtarkavan, E. and Salleh, M.F.M. (2010) Multiple description lattice vector quantization using multiple A4 quantizers, IEICE Electron. Express 7, 1233–1239.Google Scholar
[2] Akhtarkavan, E. and Salleh, M.F.M. (2012) Multiple descriptions coinciding lattice vector quantizer for wavelet image coding, IEEE Trans. Image Processing 21, 653–661.CrossRefGoogle Scholar
[3] Apostol, T.M. (1984) Introduction to Analytic Number Theory (Springer, New York); 5th corr. printing (1998).
[4] Baake, M. (1997) Solution of the coincidence problem in dimensions d _ 4. In The Mathematics of Long-Range Aperiodic Order, Moody, R.V. eds., NATO ASI Series C 489, pp. 9–44 (Kluwer, Dordrecht); rev. version: arXiv:math.MG/0605222.CrossRef
[5] Baake, M. and Frettlöh, D. (2005) SCD patterns have singular diffraction, J. Math. Phys 46, 033510: 1–10. arXiv:math-ph/0411052.CrossRefGoogle Scholar
[6] Baake, M. and Grimm, U. (2003) A note on shelling, Discr. Comput. Geom. 30, 573–589. arXiv:math.MG/0203025.Google Scholar
[7] Baake, M. and Grimm, U. (2004) Bravais colourings of planar modules with N-fold symmetry, Z. Krist. 219, 72–80. arXiv:math.CO/0301021.CrossRefGoogle Scholar
[8] Baake, M. and Grimm, U. (2006) Multiple planar coincidences with N-fold symmetry, Z. Krist. 221, 571–581. arXiv:math.MG/0511306.CrossRefGoogle Scholar
[9] Baake, M., Grimm, U., Joseph, D. and Repetowicz, P. (2000) Averaged shelling for quasicrystals, Mat. Sci. Eng. A 294–296, 441–445. arXiv:math.MG/9907156.Google Scholar
[10] Baake, M. and Moody, R.V. (1998) Similarity submodules and semigroups. In Quasicrystals and Discrete Geometry, Patera, J. eds., Fields Institute Monographs, vol. 10, pp. 1–13 (AMS, Providence, RI).
[11] Baake, M. and Moody, R.V. (1999) Similarity submodules and root systems in four dimensions, Can. J. Math. 51, 1258–1276. arXiv:math.MG/9904028.Google Scholar
[12] Baake, M., Pleasants, P.A.B. and Rehmann, U. (2007) Coincidence site modules in 3-space, Discr. Comput. Geom. 38, 111–138. arXiv:math.MG/0609793.Google Scholar
[13] Baake, M. and Zeiner, P. (2007) Multiple coincidences in dimensions d _ 3, Philos. Mag. 87, 2869–2876.Google Scholar
[14] Baake, M. and Zeiner, P. (2008) Coincidences in 4 dimensions, Philos. Mag. 88, 2025–2032. arXiv:0712.0363.Google Scholar
[15] Baake, M., Heuer, M. and Moody, R.V. (2008) Similar sublattices of the root lattice A4, J. Algebra 320, 1391–1408. arXiv:math.MG/0702448.Google Scholar
[16] Baake, M., Heuer, M., Grimm, U. and Zeiner, P. (2008) Coincidence rotations of the root lattice A4, European J. Combin. 29, 1808–1819. arXiv:0709.1341.Google Scholar
[17] Baake, M., Scharlau, R. and Zeiner, P. (2011) Similar sublattices of planar lattices, Can. J. Math. 63, 1220–1237. arXiv:0908.2558.Google Scholar
[18] Baake, M., Scharlau, R. and Zeiner, P. (2014) Well-rounded sublattices of planar lattices, Acta Arithm. 166.4, 301–334. arXiv:1311.6306.Google Scholar
[19] Bollmann, W. (1970) Crystal Defects and Crystalline Interfaces (Springer, Berlin).
[20] Bollmann, W. (1982) Crystal Lattices, Interfaces, Matrices (c W. Bollmann, Geneva).
[21] Borevich, I. and Shafarevich, I. (1966) Number Theory (Academic Press, New York).
[22] Cartan, E. (1981) The Theory of Spinors, reprint (Dover, New York).
[23] Cassels, J.W.S. (1971) An Introduction to the Geometry of Numbers, 2nd corr. printing (Springer, Berlin).
[24] Cassels, J.W.S. (1971) Rational Quadratic Forms (Academic Press, London).
[25] Conway, J.H., Rains, E.M. and Sloane, N.J.A. (1999) On the existence of similar sublattices, Can. J. Math. 51, 1300–1306. arXiv:math.CO/0207177.Google Scholar
[26] Conway, J.H. and Sloane, N.J.A. (1999) Sphere Packings, Lattices and Groups, 3rd ed (Springer, New York).
[27] Conway, J.H. and Smith, D.A. (2003) On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry (A.K. Peters, Wellesley, MA).
[28] Cooper, S. and Hirschhorn, M. (2007) On the number of primitive representations of integers as sums of squares, Ramanujan J. 13, 7–25.Google Scholar
[29] Cox, D.A. (2013) Primes of the Form x2 + ny2, 2nd ed. (Wiley, Hoboken, NJ).
[30] Coxeter, H.S.M. (1973) Regular Polytopes, 3rd ed (Dover, New York).
[31] Dai, M.X. and Urban, K. (1993) Twins in icosahedral Al-Cu-Fe, Philos. Mag. Lett. 67, 67–71.CrossRefGoogle Scholar
[32] Danzer, L. (1995) A family of 3D-spacefillers not permitting any periodic or quasiperiodic tiling. In Aperiodic ‘94, Chapuis, G. and Paciorek|W eds., pp. 11–17 (World Scientific, Singapore).
[33] Diggavi, S.N., Sloane, N.J.A. and Vaishampayan, V.A. (2002) Asymmetric multiple description lattice vector quantizers, IEEE Trans. Inf. Theory 48, 174–191.CrossRefGoogle Scholar
[34] Dümke, M. (2011) Koinzidenzgitter von Ordnungen imaginär quadratischer Zahlk örper, Diploma thesis (Bielefeld University).
[35] du Val, P. (1964) Homographies, Quaternions and Rotations (Clarendon Press, Oxford).
[36] Freiberger, J. (2008) Koinzidenzgitter von Rechteckgittern, Diploma thesis (Bielefeld University).
[37] Friedel, G. (1911) Le,cons de Cristallographie (Hermann, Paris).
[38] Garling, D.J.H. (2011) Clifford Algebras: An Introduction (Cambridge University Press, Cambridge).
[39] Gertsman, V.Y. (2001) Geometrical theory of triple junctions of CSL boundaries, Acta Cryst. A 57, 369–377.Google Scholar
[40] Gertsman, V.Y. (2001) Coincidence site lattice theory of multicrystalline ensembles, Acta Cryst. A 57, 649–655.Google Scholar
[41] Gertsman, V.Y. (2002) On the auxiliary lattices and dislocation reactions at triple junctions, Acta Cryst. A 58, 155–161.Google Scholar
[42] Glied, S. and Baake, M. (2008) Similarity versus coincidence rotations of lattices, Z. Krist. 223, 770–772. arXiv:0808.0109.CrossRefGoogle Scholar
[43] Glied, S. (2011) Similarity and coincidence isometries for modules, Can. Math. Bull. 55, 98–107. arXiv:1005.5237.Google Scholar
[44] Glied, S. (2010) Coincidence and Similarity Isometries of Modules in Euclidean Space, PhD thesis (Bielefeld University).
[45] Grimmer, H. (1973) Coincidence rotations for cubic lattices, Scripta Met. 7, 1295–1300.Google Scholar
[46] Grimmer, H. (1974) Disorientations and coincidence rotations for cubic lattices, Acta Cryst. A 30, 685–688.Google Scholar
[47] Grimmer, H. (1984) The generating function for coincidence site lattices in the cubic system, Acta Cryst. A 40, 108–112.Google Scholar
[48] Grimmer, H., Bollmann, W. and Warrington, D.H. (1974) Coincidence-site lattices and complete pattern-shift lattices in cubic crystals, Acta Cryst. A 30, 197–207.Google Scholar
[49] Grimmer, H. and Warrington, D.H. (1987) Fundamentals for the description of hexagonal lattices in general and in coincidence orientation, Acta Cryst. A 43, 232–243.Google Scholar
[50] Grimmer, H. (1989) Systematic determination of coincidence orientations for all hexagonal lattices with axial ratio c/a in a given interval, Acta Cryst. A 45, 320–325.Google Scholar
[51] Grosswald, E. (1985) Representations of Integers as Sums of Squares (Springer, New York).
[52] Gruber, B. (1997) Alternative formulae for the number of sublattices, Acta Cryst. A 53, 807–808.Google Scholar
[53] Gruber, P.M. and Lekkerkerker, C.G. (1987) Geometry of Numbers, 2nd ed. (North- Holland, Amsterdam).
[54] Hardy, G.H. and Wright, E.M. (2008) An Introduction to the Theory of Numbers, 6th ed (Oxford University Press, Oxford).
[55] Heuer, M. and Zeiner, P. (2010) CSLs of the root lattice A4, J. Phys.: Conf. Ser. 226, 012024: 1–6. arXiv:1301.2001.CrossRefGoogle Scholar
[56] Huck, C. (2009) A note on coincidence isometries of modules in Euclidean space, Z. Krist. 224, 341–344. arXiv:0811.3551.CrossRefGoogle Scholar
[57] Humphreys, J.E. (1992) Reflection Groups and Coxeter Groups, 2nd corr. printing (Cambridge University Press, Cambridge).
[58] Hurwitz, A. (1919) Vorlesungen über die Zahlentheorie der Quaternionen (Springer, Berlin).
[59] Knus, M.-A., Merkurjev, A., Rost, M. and Tignol, J.-P. (1998) The Book of Involutions (AMS, Providence, RI).
[60] Koecher, M. and Remmert, R. (1991) Hamilton's quaternions. In Numbers, Ebbinghaus, H.-D., et al. eds., GTM 123, pp. 189–220 (Springer, New York).
[61] Kronberg, M.L. and Wilson, F.H. (1949) Secondary recrystallization in copper, Trans. AIME 185, 501–514.Google Scholar
[62] Loquias, M.J.C. (2010) Coincidences and Colorings of Lattices and Z-modules, PhD thesis (Bielefeld University).
[63] Loquias, M.J.C. and Zeiner, P. (2010) Coincidence isometries of a shifted square lattice, J. Phys.: Conf. Ser. 226, 012026: 1–10. arXiv:1002.0519.CrossRefGoogle Scholar
[64] Loquias, M.J. and Zeiner, P. (2011) Colourings of lattices and coincidence site lattices, Philos. Mag. 91, 2680–2689. arXiv:1011.1001.Google Scholar
[65] Loquias, M.J. and Zeiner, P. (2014) The coincidence problem for shifted lattices and crystallographic point packings, Acta Cryst. A 70, 656–669. arXiv:1301.3689.Google Scholar
[66] Loquias, M.J. and Zeiner, P. (2015) Coincidence indices of sublattices and coincidences of colorings, Z. Krist. 230, 749–759. arXiv:1506.00028.CrossRefGoogle Scholar
[67] Lück, R. (1979) Pythagoreische Zahlen für den dreidimensionalen Raum, Phys. Blätter 35, 72–75.CrossRefGoogle Scholar
[68] Moody, R.V. and Patera, J. (1993) Quasicrystals and icosians, J. Phys. A: Math. Gen. 26, 2829–2853.CrossRefGoogle Scholar
[69] Moody, R.V. and Weiss, A. (1994) On shelling E8 quasicrystals, J. Number Theory 47, 405–412.CrossRefGoogle Scholar
[70] Patera, J. (1997) Non-crystallographic root systems and quasicrystals. In The Mathematics of Long-Range Aperiodic Order, Moody, R.V. eds., NATO ASI Series C 489, pp. 443–465 (Kluwer, Dordrecht).
[71] Pleasants, P.A.B., Baake, M. and Roth, J. (1996) Planar coincidences for N-fold symmetry, J. Math. Phys. 37, 1029–1058; rev. version: arXiv:math.MG/0511147.CrossRefGoogle Scholar
[72] Radulescu, O. (1995) An elementary approach to the crystallography of twins in icosahedral quasicrystals, J. Phys. I (France) 5, 719–728.CrossRefGoogle Scholar
[73] Radulescu, O. and Warrington, D.H. (1995) Arithmetic properties of module directions in quasicrystals,coincidence modules and coincidence quasilattices, Acta Cryst. A 51, 335–343.Google Scholar
[74] Ranganathan, S. (1966) On the geometry of coincidence-site lattices, Acta Cryst. 21, 197–199.Google Scholar
[75] Ranganathan, S. (1990) Coincidence-site lattices,superlattices and quasicrystals, Trans. Indian Inst. Met. 43, 1–7.Google Scholar
[76] Reiner, I. (2003) Maximal Orders, reprint (Clarendon Press, Oxford).
[77] Rodr´ıguez-Andrade, M.A., Arag´on-Gonz´alez, G., Arag´on, J.L. and G´omez-Rodr´ıguez, A. (2011) Coincidence lattices in the hyperbolic plane, Acta Cryst. A 67, 35–44.Google Scholar
[78] Rutherford, J.S. (1992) The enumeration and symmetry-significant properties of derivative lattices, Acta Cryst. A 48, 500–508.Google Scholar
[79] Rutherford, J.S. (2009) Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. A 65, 156–163.Google Scholar
[80] Sass, L.S. (1985) Grain boundary structure. In Encyclopedia of Materials Science and Engineering, Bever, M.B. eds., vol. 3, pp. 2041–2045 (Pergamon, Oxford).
[81] Schwarzenberger, R.L.E. (1980) N-Dimensional Crystallography (Pitman, London).
[82] Serre, J.-P. (1993) A Course in Arithmetic, 4th corr. printing (Springer, New York).
[83] Sloane, N.J.A. and Beferull-Lozano, B. (2003) Quantizing using lattice intersections. In Discrete and Computational Geometry, Aronov, B., Basu, S., Pach, J. and Sharir, M. eds., pp. 799–824 (Springer, Berlin). arXiv:math.CO/0207147.
[84] Sloane, N.J.A. eds.. The On-Line Encyclopedia of Integer Sequences, available at https://oeis.org.
[85] Tenenbaum, G. (1995) Introduction to Analytic and Probabilistic Number Theory (Cambridge University Press, Cambridge).
[86] Vignèras, M.-F. (1980) Arithmètique des Algèbres de Quaternions, LNM 800 (Springer, Berlin).
[87] Warrington, D.H. (1993) Coincidence site lattices in quasicrystal tilings, Mat. Science Forum 126–128, 57–60.CrossRefGoogle Scholar
[88] Washington, L.C. (1997) Introduction to Cyclotomic Fields, 2nd ed. (Springer, New York).
[89] Weiss, A. (2000) On shelling icosahedral quasicrystals. In Directions in Mathematical Quasicrystals, Baake, M. and Moody, R.V. eds., CRM Monograph Series, vol. 13, pp. 161–176 (AMS, Providence, RI).
[90] Zagier, D.B. (1981) Zetafunktionen und quadratische Körper (Springer, Berlin).
[91] Zassenhaus, H.J. (1958) The Theory of Groups, 2nd ed. (Chelsea, New York).
[92] Zeiner, P. (2005) Symmetries of coincidence site lattices of cubic lattices, Z. Krist. 220, 915–920. arXiv:math.MG/0605525.Google Scholar
[93] Zeiner, P. (2006) Coincidences of hypercubic lattices in 4 dimensions, Z. Krist. 221, 105–114. arXiv:math.MG/0605526.Google Scholar
[94] Zeiner, P. (2006) Multiple CSLs for the body centered cubic lattice, J. Phys.: Conf. Ser. 30, 163–167. arXiv:math.MG/0605521.Google Scholar
[95] Zeiner, P. (2010) Multiplicativity in the theory of coincidence site lattices, J. Phys.: Conf. Ser. 226, 012025: 1–6. arXiv:1212.4528.Google Scholar
[96] Zeiner, P. (2014) Similar submodules and coincidence site modules, Acta Phys. Pol. A 126, 641–645. arXiv:1402.5013..Google Scholar
[97] Zeiner, P. (2015). Coincidence Site Lattices and Coincidence Site Modules, Habilitation thesis (Bielefeld University)
[98] Zou, Y.M. (2006) Indices of coincidence isometries of the hypercubic lattice Zn, Acta Cryst. A 62, 454–458.Google Scholar
[99] Zou, Y.M. (2006), Structures of coincidence symmetry groups, Acta Cryst. A 62, 109–114.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×