Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T10:25:17.384Z Has data issue: false hasContentIssue false

Chapter 5 - The Confluence of Anthropological Genetics and Anthropological Demography

Published online by Cambridge University Press:  05 June 2012

James H. Mielke
Affiliation:
University of Kansas
Alan G. Fix
Affiliation:
University of California
Michael H. Crawford
Affiliation:
University of Kansas
Get access

Summary

Introduction

The relationship between demography and evolution is close and long-standing. After all, it was by reading Malthus' (1798) essay on population that both Darwin and Wallace achieved their insight into natural selection. The importance of demography for anthropological genetics continues to be strong. Anthropological genetics, concerned with understanding the patterns and causes of genetic variation within and among populations, depends on anthropological demography to provide data on population sizes and fluctuations, mating structure, and migration patterns and histories that are crucial for that understanding.

While demographers study many aspects of human populations (Preston et al., 2001; Siegel and Swanson, 2004), anthropological demography usually focuses on small-scale populations and is often linked with studies of human biology. Anthropological demographic studies have been undertaken expressly to provide information necessary to understand genetic variation.

Demography is the study of human population. More specifically, as the classic definition states: ‘Demography is the study of the size, territorial distribution, and composition of population, changes therein, and the components of such change’ (Hauser and Duncan, 1959: 31). The size and composition of a population is caused by three fundamental factors: fertility (births), mortality (deaths), and migration (in-migration and out-migration). The discipline of demography has historically emphasized measurement and description of these vital processes, usually at the macro level of the national population. It is generally the population characteristics of countries that are analysed and compared (e.g. see Keyfitz and Fleiger, 1968).

Type
Chapter
Information
Anthropological Genetics
Theory, Methods and Applications
, pp. 112 - 140
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J., and Smouse, P. E. (1985). Genetic consequences of demographic change in human populations. In Genealogical Demography, ed. Dyke, B., and Morrill, W. T.. New York: Academic Press, pp. 115–38.Google Scholar
Allendorf, F. W. (1986). Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology, 5, 181–90CrossRefGoogle Scholar
Anderson, R. M., and May, R. M. (1985). Age-related changes in the rate of disease transmission: Implications to the design of vaccination programmes. Jour. Hygene, 94, 365–436CrossRefGoogle ScholarPubMed
Armelagos, G. J., and Dewey, J. (1970). Evolutionary response to human infectious disease. Bioscience, 20(5), 271–5CrossRefGoogle Scholar
Armelagos, G. J., and McArdle, A. (1975). Population, disease, and evolution. In ed. Swedlund, A. C., Population Studies in Archaeology and Biological Anthropology: A Symposium, Memoir of the Society of American Archaeology, No. 30.Google Scholar
Armelagos, G. J., Goodman, A. H., and Jacobs, K. H. (1991). The origins of agriculture: Population growth during a period of declining health. Population and Environment, 13(1), 9–22CrossRefGoogle Scholar
Armour, J. A. L., Anttinen, T., May, C. A., Vega, E. E., Sajantil, A., Kidd, J. R., Kidd, K. K., Bertranpetit, J., Paabo, S., and Jeffreys, A. J. (1996). Minisatellite diversity supports a recent African origin for modern humans. Nature Genetics, 13, 154–60CrossRefGoogle ScholarPubMed
Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and Its Applications. New York: Hafner Press.Google Scholar
Bajema, C. (1963). Estimation of the direction and intensity of natural selection in relation to human intelligence by means of the intrinsic rate of natural increase. Eugenics Quarterly, 10, 175–87CrossRefGoogle ScholarPubMed
Barrett, R., Kuzawa, C. W., McDade, T., and Armelagos, G. J. (1998). Emerging and re-emerging infectious diseases: The third epidemiological transition. Annual Review of Anthropology, 27, 247–71CrossRefGoogle Scholar
Bentley, G. (1993). The fertility of agricultural and non-agricultural traditional societies. Population Studies, 47, 269–81CrossRefGoogle Scholar
Bittles, A. H., McHugh, J. J., and Makov, E. (1986). The Irish famine and its sequel: Population structure changes in the Ards Peninsula, Co. Down, 1841–1911. Annals. Human Biol., 13, 473–87CrossRefGoogle ScholarPubMed
Bittles, H. A. (1988). Famine and man: Demographic and genetic effects of the Irish famine, 1846–1851. In Antropologie et Histoire ou Anthropologie Historique?, ed. Buchet, L.. Actes des Troisiémes Journées Anthropologiques de Valbonne, Notes et monographies techniques No. 24. Paris: Centre National de la Recherche Scientifique, pp. 159–75.Google Scholar
Black, F. L. (1966). Measles endemicity in insular populations: Critical community size and its evolutionary implication. J. Theoret. Biol., 11, 207–11CrossRefGoogle ScholarPubMed
Bodmer, W. F. (1968). Demographic approaches to the measurement of differential selection in human populations. Proceedings of the National Academy of Sciences, 59, 690–9CrossRefGoogle ScholarPubMed
Boyce, A. J., Kuchemann, C. F., and Harrison, G. A. (1967). Neighbourhood knowledge and the distribution of marriage distances. Annals of Human Genetics, 30, 335–8CrossRefGoogle ScholarPubMed
Cann, R. L., Stoneking, M., and Wilson, A. C. (1987). Mitochondrial, DNA and human evolution. Nature, 325, 31–6CrossRefGoogle ScholarPubMed
Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A., and Liu, W. M. (1989). Epidemiological models with age structure, proportionate mixing, and cross-immunity. Jour. Mathematical Biology, 27, 233–58CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L. (1959). Some data on the genetic structure of human populations. Proc. X Internatl. Congress Genetics, 1, 389–407Google Scholar
Cavalli-Sforza, L. L., and Bodmer, W. F. (1961). The Genetics of Human Populations. San Francisco, CA: W. H. Freeman.Google Scholar
Cliff, A. D., Haggett, P., Ord, J. K., and Versey, G. R. (1981). Spatial Diffusion: An Historical Geography of Epidemics in an Island Community. Cambridge: Cambridge University Press.Google Scholar
Coale, A. J. (1974). The history of the human population. Scientific American, 231(3), 31–51CrossRefGoogle ScholarPubMed
Coale, A. J., Anderson, B., and Härm, E. (1979). Human Fertility in Russia Since the Nineteenth Century. Princeton, NJ: Princeton University Press.Google Scholar
Coale, A. J., and Watkins, S. C., eds. (1986). The Decline of Fertility in Europe. Princeton, NJ: Princeton University Press.Google Scholar
Cockburn, J. (1971). Infectious disease in ancient populations. Current Anthropology, 12(1), 45–62CrossRefGoogle Scholar
Cohen, M. N., and Armelagos, G. J. (1984). Paleopathology at the Origins of Agriculture. Orlando: Academic Press.Google Scholar
Crawford, M. H., Dyles, D. D., and Polesky, H. F. (1989). Genetic structure of Mennonite populations of Kansas and Nebraska. Human Biology, 61, 493–514Google ScholarPubMed
Dentan, R. K. (1968). The Semai: A Nonviolent People of Malaya, New York: Holt, Rinehart and Winston.Google Scholar
Dingle, H. (1996). Migration: The Biology of Life on the Move. Oxford: Oxford University Press.Google Scholar
Dobson, M. J. (1992). Contours of death: Disease, mortality and the environment in early modern England. Health Transition Review. Supplementary issue to Volume 2, 77–96.Google Scholar
Eller, E. (2002). Population extinction and recolonization in human demographic history. Math. Biosci., 177 and 178, 1–10CrossRefGoogle ScholarPubMed
Ferguson, N. M., Donnelly, C. A., and Anderson, R. M. (2001). The foot-and-mouth epidemic in Great Britain: Pattern of spread and impact of interventions. Science, 292, 1155–60CrossRefGoogle ScholarPubMed
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. London: Clarendon Press.CrossRefGoogle Scholar
Fix, A. G. (1978). The role of kin-structured migration in genetic microdifferentiation. Annals of Human Genetics, London, 41, 329–39CrossRefGoogle ScholarPubMed
Fix, A. G. (1999). Migration and Colonization in Human Microevolution. Cambridge: Cambridge University Press.Google Scholar
Fix, A. G. (2004). Kin-structured migration: causes and consequences. American Journal of Human Biology, 16, 1–8CrossRefGoogle ScholarPubMed
Gilmour, J. S. L., and Gregor, J. W. (1939). Demes: A suggested new terminology. Nature, 144, 333.CrossRefGoogle Scholar
Glass, D. V., and Eversley, D. E. C., eds. (1965). Population in History: Essays in Historical Demography. London: Edward Arnold.Google Scholar
Glass, R. I., Holmgren, J., Haley, C. E., Khan, M. R., Svennerholm, A.-M., Stoll, B. J., Belayet, K. M., Hossain, K., Black, R. E., Yunus, M., and Baru, D. (1985). Predisposition for cholera of individuals with O blood group: Possible evolutionary significance. Amer. J. Epidemiology, 121(6), 791–6CrossRefGoogle Scholar
Hammer, M. F. (1995). A recent common ancestry for human Y chromosomes. Nature, 378, 376–8CrossRefGoogle ScholarPubMed
Harding, R. M., Fullerton, S. M., Griffiths, R. C., Bond, J., Cox, M. J., Schneider, J. A., Moulin, D. S., and Clegg, J. B. (1997). Archaic African and Asian lineages in the genetic diversity of modern humans. Amer. J. Hum. Genet., 60, 772–89Google ScholarPubMed
Harpending, H. C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol., 66, 591–600Google Scholar
Harpending, H. C., and Rogers, A. R. (2000). Genetic perspectives on human origins and differentiation. Annu. Rev. Genomics Hum. Genet., 1, 361–85CrossRefGoogle Scholar
Harpending, H. C., Batzer, M. A., Gurven, M. A., Jorde, L. B., Rogers, A. R., and Sherry, S. T. (1998). Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA, 95, 1961–7CrossRefGoogle ScholarPubMed
Harpending, H. C., Sherry, S. T., Rogers, A. R., and Stoneking, M. (1993). The genetic structure of ancient human populations. Current Anthropology, 34, 483–96CrossRefGoogle Scholar
Hauser, P., and Duncan, O. D. (1959). The Study of Population. Chicago: Chicago University Press.Google Scholar
John, A. M. (1990). Transmission and control of childhood infectious diseases: Does demography matter?Population Studies, 44(2), 195–215CrossRefGoogle Scholar
Jorde, L. B. (1980). The genetic structure of subdivided human populations: a review. In Current Developments in Anthropological Genetics, eds. Mielke, J. H., and Crawford, M. H.. New York: Plenum, pp. 135–208.CrossRefGoogle Scholar
Jorde, L. B., Watkins, W. S., and Bamshad, M. J. (2001). Population genomics: A bridge from evolutionary history to genetic medicine. Human Molecular Genetics, 10, 2199–2207CrossRefGoogle ScholarPubMed
Keeling, M. J., Woolhouse, M. E. J., Shaw, D. J., Matthews, L., Chase-Topping, M., Haydon, D. T., Cornell, S. J., Kappey, J., Wilesmith, J., and Grenfell, B. T. (2001). Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science, 294, 813–17CrossRefGoogle Scholar
Kermack, W. O., and McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics. Part I. Proceed. Royal Society, 115, 700–21CrossRefGoogle Scholar
Keyfitz, N., and Flieger, W. (1968). World Population: An Analysis of Vital Data. Chicago: University of Chicago Press.Google Scholar
Kundstadter, P. (1972). Demography, ecology, social structure and settlement patterns. In The Structure of Human Populations, eds. Harrison, G. A., and Boyce, A. J.. Oxford: Oxford University Press.Google Scholar
Landers, J., ed. (1992). Historical Epidemiology and the Health Transition. Health Transition Review. Supplementary issue to Volume 2.Google Scholar
Lewis, G. H. (1982). Human Migration: A Geographical Perspective. London: Croom Helm.Google Scholar
Livi-Bacci, M. (1977). A History of Italian Fertility During the Last Two Centuries. Princeton, NJ: Princeton University Press.Google Scholar
Livingstone, F. B. (1984). The Duffy blood groups, vivax malaria, and malaria selection in human populations: A review. Human Biology, 56(3), 413–25Google Scholar
Livingstone, F. B. (1985). Frequencies of Hemoglobin Variants: Thalassemia, the Glucose-6-Phosphate Dehydrogenase, G6PD Variants and Ovalocytosis in human Populations. New York: Oxford University Press.Google Scholar
Malécot, G. (1948). Les Mathématiques de l'Hérédite. Paris: Masson.Google Scholar
Malécot, G. (1969). The Mathematics of Heredity. San Francisco: WH Freeman.Google Scholar
Malthus, T. R. (1798). An Essay on the Principle of Population, 1st edn. Harmondsworth Penguin Books, 1970.
McGrath, J. W. (1988). Social networks and disease spread in the Lower Illinois Valley: A simulation approach. Amer. J. Phys. Anthrop., 77, 483–96CrossRefGoogle ScholarPubMed
McNicoll, G. (1992). The agenda of population studies: a commentary and complaint. Population and Development Review, 18(3), 399–420CrossRefGoogle Scholar
Mielke, J. H., Workman, P. W., Fellman, J., and Eriksson, A. W. (1976). Population structure of the Aland Islands, Finland. Advances in Human Genetics, 6, 241–321Google ScholarPubMed
Morgan, K., and Holmes, T. M. (1982). Population structure of a religious isolates: the Dariusleut Hutterites of Alberta. In Current Developments in Anthropological Genetics. Vol. 2. Ecology and Social Structure, eds. Crawford, M. H., and Mielke, J. H.. New York: Plenum Press, pp. 429–48.CrossRefGoogle Scholar
Morin, P. A., Moore, J. J., Chakraborty, R., Jin, L., Goodall, J., and D. S. Woodruff, (1994). Kin selection, social structure, gene flow and the evolution of chimpanzees. Science, 265, 1193–1201CrossRefGoogle ScholarPubMed
Morton, N. E. (1977). Isolation by distance in human populations. Annals of Human Genetics, London, 40, 361–5CrossRefGoogle ScholarPubMed
Murdock, S. H., and Ellis, D. R. (1991). Applied Demography: An Introduction to Basic Concepts, Methods, and Data. Boulder, CO: Westview Press.Google Scholar
Murray, G. D., and Cliff, A. D. (1975). A stochastic model for measles epidemics in a multi-region setting. Trans. Inst. Brit. Geograph., ns 2, 158–74CrossRefGoogle Scholar
Newell, C. (1988). Methods and Models in Demography. New York: Guilford Press.Google Scholar
Olsen, C. L. (1987). The demography of colony fission from 1878–1970 among the Hutterites of North America. American Anthropologist, 89, 823–37CrossRefGoogle Scholar
Olsson, G. (1965). Distance and human interaction: a migration study. Geografiska Annaler, 47, 3.43.Google Scholar
Omran, A. R. (1971). The epidemiological transition: A theory of the epidemiology of population change. Milbank Memorial Fund Quarterly, 49(4), 509–37CrossRefGoogle ScholarPubMed
Omran, A. R. (1983). The epidemiological transition theory: A preliminary update. J. Tropical Pediatrics, 29(6), 305–16CrossRefGoogle ScholarPubMed
Pettenkofer, H. J., Stöss, B., Helmbod, W., and Vogel, F. (1962). Severe smallpox scars in A+AB. Nature, 193, 445–46CrossRefGoogle Scholar
Preston, S. H. (1993). The contours of demography: estimates and projections. Demography, 30(4), 593–606CrossRefGoogle Scholar
Preston, S. H., Heuveline, P., and Guillot, M. (2001). Demography: Measuring and Modeling Population Processes. Malden, MA: Blackwell Publishers.Google Scholar
Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., and Feldman, M. W. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Mol. Biol. Evol., 16, 1791–8CrossRefGoogle ScholarPubMed
Relethford, J. H. (2001). Genetics and the Search for Modern Human Origins. New York: Wiley-Liss.Google Scholar
Roberts, D. F. (1967). The development of inbreeding in an island population. Ciencia e Cultura, 19, 78–84Google Scholar
Roberts, D. F. (1968). Genetic effects of population size reduction. Nature, 220, 1084–8CrossRefGoogle ScholarPubMed
Roberts, D. F. (1971). The demography of Tristan da Cunha. Population Studies, 25, 465–79CrossRefGoogle ScholarPubMed
Roberts, D. F. (1973). Anthropological genetics: Problems and pitfalls. In Methods and Theories of Anthropological Genetics, eds. Crawford, M. H., and Workman, P. L., A School of American Research Book. Albuquerque: University of New Mexico Press, pp. 1–17.Google Scholar
Rogers, A. R. (1988). Three components of genetic drift in subdivided populations. American Journal of Physical Anthropology, 77, 435–50CrossRefGoogle ScholarPubMed
Rogers, A. R. (1995). Genetic evidence for a Pleistocene population explosion. Evolution, 49, 608–15CrossRefGoogle ScholarPubMed
Rogers, A. R., and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol., 9, 552–69Google ScholarPubMed
Rushton, S., and Mautner, A. J. (1955). The deterministic model of a simple epidemic for more than one community. Biometrika, 42, 126–32CrossRefGoogle Scholar
Rvachev, L. A., and Longini, I. M. Jr. (1985). A mathematical model for the global spread of influenza. Mathematical Biosciences, 75, 3–22CrossRefGoogle Scholar
Ryder, N. B. (1964). Notes on the concept of a population. American Journal of Sociology, 69 (5), 447–63.CrossRefGoogle Scholar
Sattenspiel, L. (1990). Modeling the spread of infectious disease in human populations. Yearbook Phys. Anthrop., 33, 245–76CrossRefGoogle Scholar
Sattenspiel, L. (2003). Infectious diseases in the historical archives: A modeling approach. In Human Biologists in the Archives, eds. Herring, D. Ann, and Swedlund, A. C.. Cambridge: Cambridge University Press, pp. 234–65.Google Scholar
Sattenspiel, L., and Dietz, K. (1995). A structured epidemic model incorporating geographic mobility among regions. Mathematical Biosciences, 128, 71–91CrossRefGoogle ScholarPubMed
Sattenspiel, L., and Herring, D. A. (1998). Structured epidemic models and the spread of influenza in the Central Canadian subarctic. Human Biology, 70, 91–115Google ScholarPubMed
Seielstad, M. T., Minch, E., and Cavalli-Sforza, L. L. (1998). Genetic evidence for a higher female migration rate in humans. Nature Genetics, 20, 278–80CrossRefGoogle ScholarPubMed
Sherry, S. T., Batzer, M. A., and Harpending, H. C. (1998). Modeling the genetic architecture of modern populations. Annual Review of Anthropology, 27, 153–69CrossRefGoogle Scholar
Sherry, S. T., Harpending, H. C., Batzer, M. A., and Stoneking, M. (1997). Alu evolution in human populations: Using the coalescent to estimate effective population size. Genetics, 147, 1977–82Google ScholarPubMed
Sherry, S. T., Rogers, A. R., Harpending, H., Soodyall, H., Jenkins, T., and Stoneking, M. (1994). Mismatch distributions of mtDNA reveal recent human population expansions. Hum. Biol., 66, 761–75Google ScholarPubMed
Shurr, T. G., and Sherry, S. T. (2004). Mitochondrial DNA and Y chromosome diversity and the peopling of the Americas: Evolutionary and demographic evidence. Amer. J. Human Biology, 16, 420–39CrossRefGoogle Scholar
Shyrock, H. S., Siegel, J. S. and Associates (1980). The Methods and Materials of Demography. Volume 1, US Department of Commerce, Bureau of the Census. Washington, DC: US Government Printing Office.Google Scholar
Siegel, J. S., and Swanson, D. A., eds. (2004). The Methods and Materials of Demography, 2nd edn. London: Elsevier Academic Press.Google Scholar
Slatkin, M., and Hudson, R. R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–62Google ScholarPubMed
Smith, M. T., Williams, W. R., McHugh, J. J., and Bittles, A. H. (1990). Isonymic analysis of post-famine relationships in the Ards Peninsula, N.E. Ireland: Effects of geographical and politico-religious boundaries. Amer. J. Human Biol., 2, 245–54CrossRefGoogle ScholarPubMed
Soper, H. E. (1929). Interpretation of the periodicity in disease prevalence. Jour. Royal Statistical Society, 92, 34–73CrossRefGoogle Scholar
Stoneking, M. (1998). Women on the move. Nature Genetics, 20, 219–20CrossRefGoogle ScholarPubMed
Stoneking, M., Fontius, J. J., Clifford, S. L., Soodyall, H., Arcot, S. S., Saha, N., Jenkins, T., Tahir, M. A., Deininger, P. L., and Batzer, M. A. (1997). Alu insertion polymorphisms and human evolution: Evidence for a larger population size in Africa. Genome Research, 7, 1061–71CrossRefGoogle ScholarPubMed
Swedlund, A. C., and Armelagos, G. J. (1990). Disease in Populations in Transition: Anthropological and Epidemiological Perspectives. New York: Bergin and Garvey.Google Scholar
Tajima, F. (1989). The effects of change in population size on DNA polymorphism. Genetics, 123, 597–601Google Scholar
Takahata, N. (1993). Allelic genealogy and human evolution. Mol. Biol. Evol., 10, 2–22Google Scholar
Tilly, J. (ed.) (1978). Historical Studies of Changing Fertility. NJ: Princeton University Press.Google Scholar
Vogel, F., and Motulsky, A. G. (1997). Human Genetics: Problems and Approaches. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Vogel, F., Pettenkofer, H. J., and Helmbold, W. (1960). Űber die Populationsgenetik der ABO-Blutgruppen. Acta Genet., 10(2), 267–294Google Scholar
Wilder, J. A., Kingan, S. B., Mobasher, Z., Pilkington, M. M., and Hammer, M. F. (2004). Global patterns of human mitochondrial DNA and Y-chromosome stsructure are not influenced by higher migration rates of females versus males. Nature Genetics, 36, 1122–5CrossRefGoogle Scholar
Wilmoth, J. (2004). Population size. In eds. Siegel, J. S., and Swanson, D. A. (2004). The Methods and Materials of Demography, 2nd edn. London: Elsevier Academic Press, pp. 65–80.Google Scholar
Wilson, J. E., Levins, R., and Spielman, A., eds. (1994). Disease in Evolution: Global Changes and Emergence of Infectious Diseases. Annals of the New York Academy of Sciences, Vol. 740.Google Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159Google ScholarPubMed
Wright, S. (1969). Evolution and the Genetics of Populations, Volume 2, The Theory of Gene Frequencies. Chicago: The University of Chicago Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×