Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T04:54:21.200Z Has data issue: false hasContentIssue false

9 - Rapid adaptive camouflage in cephalopods

Published online by Cambridge University Press:  05 June 2012

Roger T. Hanlon
Affiliation:
Woods Hole, MA, USA
Chuan-Chin C. Chiao
Affiliation:
National Tsing Hua University, Hsinchu, Taiwan
Lydia M. Mäthger
Affiliation:
Woods Hole, MA, USA
Kendra C. Buresch
Affiliation:
Woods Hole, MA, USA
Alexandra Barbosa
Affiliation:
University of Porto, Portugal
Justine J. Allen
Affiliation:
Brown University, Providence, USA
Liese Siemann
Affiliation:
Woods Hole, MA, USA
Charles Chubb
Affiliation:
University of California at Irvine, CA, USA
Martin Stevens
Affiliation:
University of Cambridge
Sami Merilaita
Affiliation:
Åbo Akademi University, Finland
Get access

Summary

Camouflage versatility is probably no better developed in the animal kingdom than in the coleoid cephalopods (octopus, squid, cuttlefish). These marine molluscs possess soft bodies, diverse behaviour, elaborate skin patterning capabilities and a sophisticated visual system that controls body patterning for communication and camouflage (Packard 1995; Hanlon & Messenger 1996; Messenger 2001).

Cephalopods form a key component of the food chain and are preyed upon by nearly all of the major carnivores in the ocean – an enormous variety of marine mammals, diving birds and teleost and elasmobranch fishes. Their primary defence is visual camouflage (Hanlon & Messenger 1996). The diversity of visual systems represented by these predators is quite extraordinary and the camouflaged body patterns of cephalopods have evolved in response to these selective pressures. Benthic shallow-water cephalopods have rapid adaptive camouflage so that they can move about freely (foraging, finding mates, etc.) in multiple ecohabitats and avoid visual predation by tuning their camouflage to nearly any visual background in their natural ranges.

Type
Chapter
Information
Animal Camouflage
Mechanisms and Function
, pp. 145 - 163
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J., Mäthger, L., Barbosa, A. & Hanlon, R. 2009. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. Journal of Comparative Physiology A, 195, 547–555.CrossRefGoogle ScholarPubMed
Allen, J. J., Mäthger, L. M., Barbosa, A.et al. 2010. Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proceedings of the Royal Society, Series B, 277, 1031–1039.CrossRefGoogle ScholarPubMed
Barbosa, A., Mäthger, L. M., Chubb, C.et al. 2007. Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. Journal of Experimental Biology, 210, 1139–1147.CrossRefGoogle ScholarPubMed
Barbosa, A., Mäthger, L., Buresch, K.et al. 2008a. Cuttlefish camouflage: the effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vision Research, 48, 1242–1253.CrossRefGoogle ScholarPubMed
Barbosa, A., Litman, L. & Hanlon, R. T. 2008b. Changeable cuttlefish camouflage is influenced by horizontal and vertical aspects of the visual background. Journal of Comparative Physiology A, 194, 405–413.CrossRefGoogle ScholarPubMed
Chiao, C. C. & Hanlon, R. T. 2001a. Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. Journal of Experimental Biology, 204, 2119–2125.Google ScholarPubMed
Chiao, C. C. & Hanlon, R. T. 2001b. Cuttlefish cue visually on area – not shape or aspect ratio – of light objects in the substrate to produce disruptive body patterns for camouflage. Biological Bulletin, 201, 269–270.CrossRefGoogle ScholarPubMed
Chiao, C. C., Kelman, E. J. & Hanlon, R. T. 2005. Disruptive body pattern of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds. Biological Bulletin, 208, 7–11.CrossRefGoogle Scholar
Chiao, C. C., Chubb, C. & Hanlon, R. T. 2007. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vision Research, 47, 2223–2235.CrossRefGoogle ScholarPubMed
Chiao, C. C., Chubb, C., Buresch, K., Siemann, L. & Hanlon, R. T. 2009. The scaling effects of substrate texture on camouflage patterning in cuttlefish. Vision Research, 49, 1647–1656.CrossRefGoogle ScholarPubMed
Chiao, C. C., Chubb, C., Buresch, K.et al. 2010. Mottle camouflage patterns in cuttlefish: quantitative characterization and visual stimuli that evoke them. Journal of Experimental Biology, 213, 187–199.CrossRefGoogle Scholar
Cott, H. B. 1940. Adaptive Coloration in Animals. London: Methuen.Google Scholar
Dubas, F., Hanlon, R. T., Ferguson, G. P. & Pinsker, H. M. 1986. Localization and stimulation of chromatophore motoneurones in the brain of the squid, Lolliguncula brevis. Journal of Experimental Biology, 121, 1–25.Google ScholarPubMed
Edmunds, M. 1974. Defence in Animals: A Survey of Anti-Predator Defences. Harlow, UK: Longman.Google Scholar
Endler, J. A. 1984. Progressive background matching in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22, 187–231.CrossRefGoogle Scholar
Froesch, D. & Messenger, J. B. 1978. On leucophores and the chromatic unit of Octopus vulgaris. Journal of Zoology (London), 186, 163–173.CrossRefGoogle Scholar
Hanlon, R. T. 1988. Behavioral and body patterning characters useful in taxonomy and field identification of cephalopods. Malacologia, 29, 247–264.Google Scholar
Hanlon, R. T. 2007. Cephalopod dynamic camouflage. Current Biology, 17, R400–R404.CrossRefGoogle ScholarPubMed
Hanlon, R. T. & Messenger, J. B. 1988. Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society of London, Series B, 320, 437–487.CrossRefGoogle Scholar
Hanlon, R. T. & Messenger, J. B. 1996. Cephalopod Behaviour. Cambridge, UK: Cambridge University Press.Google Scholar
Hanlon, R. T., Forsythe, J. W. & Joneschild, D. E. 1999. Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66, 1–22.CrossRefGoogle Scholar
Hanlon, R. T., Naud, M.-J., Forsythe, J. W.et al. 2007. Adaptable night camouflage by cuttlefish. American Naturalist, 169, 543–551.CrossRefGoogle ScholarPubMed
Hanlon, , R. T., Conroy, L. & Forsythe, J. W. 2008. Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia. Biological Journal of the Linnean Society, 93, 23–38.CrossRefGoogle Scholar
Hanlon, R. T., Chiao, C., Mäthger, L.et al. 2009. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philosophical Transactions of the Royal Society, Series B, 364, 429–437.CrossRefGoogle ScholarPubMed
Hanlon, R. T., Watson, A. C. & Barbosa, A. 2010. A ‘mimic octopus’ in the Atlantic: flatfish mimicry and camouflage by Macrotritopus defilippi. Biological Bulletin, 218, 15–24.CrossRefGoogle Scholar
Holmes, W. 1940. The colour changes and colour patterns of Sepia officinalis L. Proceedings of the Zoological Society of London A, 110, 2–35.Google Scholar
Huffard, C. L. 2006. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defences. Journal of Experimental Biology, 209, 3697–3707.CrossRefGoogle Scholar
Huffard, C. L. 2007. Ethogram of Abdopus aculeatus (D'Orbigny, 1834) (Cephalopoda: Octopodidae): can behavioural characters inform octopodid taxonomy and systematics? Journal of Molluscan Studies, 73, 185–193.CrossRefGoogle Scholar
Huffard, C. L., Boneka, F. & Full, R. J. 2005. Underwater bipedal locomotion by octopuses in disguise. Science, 307, 1927.CrossRefGoogle ScholarPubMed
Kelman, E., Baddeley, O. R., Shohet, A. & Osorio, D. 2007. Perception of visual texture and the expression of disruptive camouflage by the cuttlefish, Sepia officinalis. Proceedings of the Royal Society, Series B, 274, 1369–1375.CrossRefGoogle ScholarPubMed
Kelman, E., Osorio, D. & Baddeley, R. 2008. A review of cuttlefish camouflage and object recognition and evidence for depth perception. Journal of Experimental Biology, 211, 1757–1763.CrossRefGoogle ScholarPubMed
Langridge, K. V. 2006. Symmetrical crypsis and asymmetrical signalling in the cuttlefish Sepia officinalis. Proceedings of the Royal Society, Series B, 273, 959–967.CrossRefGoogle ScholarPubMed
Langridge, K. V. 2009. Cuttlefish use startle displays, but not against large predators. Animal Behaviour, 77, 847–856.CrossRefGoogle Scholar
Lythgoe, J. N. 1979. The Ecology of Vision. Oxford, UK: Oxford University Press.Google Scholar
Marshall, N. J. & Messenger, J. B. 1996. Colour-blind camouflage. Nature, 382, 408–409.CrossRefGoogle Scholar
Marshall, N. J., Jennings, K. J., McFarland, W. N., Loew, E. R. & Losey, G. S. 2003. Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia, 3, 467–480.CrossRefGoogle Scholar
Martin, P. & Bateson, P. 2007. Measuring Behaviour: An Introductory Guide, 3rd edn. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Mäthger, L. M. & Hanlon, R. T. 2006. Anatomical basis for camouflaged polarized light communication in squid. Biology Letters, 2, 494–496.CrossRefGoogle ScholarPubMed
Mäthger, L. M. & Hanlon, R. T. 2007. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and Tissue Research, 329, 179–186.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Barbosa, A., Miner, S. & Hanlon, R. T. 2006. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Research, 46, 1746–1753.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Chiao, C. C., Barbosa, A.et al. 2007. Disruptive coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis. Journal of Experimental Biology, 210, 2657–2666.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Chiao, C.-C., Barbosa, A. & Hanlon, R. T. 2008. Color matching on natural substrates in cuttlefish, Sepia officinalis. Journal of Comparative Physiology A, 194, 577–585.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Denton, E. J., Marshall, N. J. & Hanlon, R. T. 2009. Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 6 (Suppl 2), S149–S163.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Roberts, S. B. & Hanlon, R. T. 2010. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biology Letters, 6, 600–603.CrossRefGoogle ScholarPubMed
Merilaita, S., Lyytinen, A. & Mappes, J. 2001. Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society, Series B, 268, 1925–1929.CrossRefGoogle Scholar
Messenger, J. B. 2001. Cephalopod chromatophores: neurobiology and natural history. Biological Reviews, 76, 473–528.CrossRefGoogle ScholarPubMed
Norman, M. D., Finn, J. & Tregenza, T. 2001. Dynamic mimicry in an Indo-Malayan octopus. Proceedings of the Royal Society of London, Series B, 268, 1755–1758.CrossRefGoogle Scholar
Packard, A. 1995. Organization of cephalopod chromatophore systems: a neuromuscular image-generator. In Cephalopod Neurobiology, eds. Abbott, N. J., Williamson, R. & Maddock, L. Oxford, UK: Oxford University Press, pp. 331–368.Google Scholar
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. 2006. Cuttlefish response to visual orientation of substrates, water flow and a model of motion camouflage. Journal of Experimental Biology, 209, 4717–4723.CrossRefGoogle Scholar
Shohet, A., Baddeley, O., Anderson, J. & Osorio, D. 2007. Cuttlefish camouflage: a quantitative study of patterning. Biological Journal of the Linnean Society, 92, 335–345.CrossRefGoogle Scholar
Skelhorn, J., Rowland, H. M., Speed, M. P. & Ruxton, G. D. 2010. Masquerade: camouflage without crypsis. Science, 327, 51.CrossRefGoogle ScholarPubMed
Spottiswoode, C. N. & Stevens, M. 2010. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs. Proceedings of the National Academy of Sciences of the USA, 107, 8672–8676.CrossRefGoogle ScholarPubMed
Stevens, M. 2007. Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society, Series B, 274, 1457–1464.CrossRefGoogle ScholarPubMed
Stevens, M., Cuthill, I. C., Windsor, A. M. M. & Walker, H. J. 2006. Disruptive contrast in animal camouflage. Proceedings of the Royal Society, Series B, 273, 2433–2438.CrossRefGoogle ScholarPubMed
Stevens, M. & Merilaita, S. 2009a. Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society, Series B, 364, 423–427.CrossRefGoogle ScholarPubMed
Stevens, M. & Merilaita, S. 2009b. Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society, Series B, 364, 481–488.CrossRefGoogle ScholarPubMed
Stoddard, M. S. & Stevens, M. 2010. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird's eye. Proceedings of the Royal Society, Series B, 277, 1387–1393.CrossRefGoogle ScholarPubMed
Sutherland, R. L., Mäthger, L. M., Hanlon, R. T., Urbas, A. M. & Stone, M. O. 2008. Cephalopod coloration model. II. Multiple layer skin effects. Journal of the Optical Society of America A, 25, 2044–2054.CrossRefGoogle ScholarPubMed
Thayer, G. H. 1909. Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer's Discoveries. New York: Macmillan.Google Scholar
Wickler, W. 1968. Mimicry. London: Weidenfeld & Nicolson.Google Scholar
Zylinski, S., Osorio, D. & Shohet, A. J. 2009a. Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officinalis. Philosophical Transactions of the Royal Society, Series B, 364, 439–448.CrossRefGoogle ScholarPubMed
Zylinski, S., Osorio, D. & Shohet, A. 2009b. Edge detection and texture classification by cuttlefish. Journal of Vision, 9, 1–10.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×