Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 12
  • Print publication year: 2011
  • Online publication date: June 2012

9 - Rapid adaptive camouflage in cephalopods

Summary

Camouflage versatility is probably no better developed in the animal kingdom than in the coleoid cephalopods (octopus, squid, cuttlefish). These marine molluscs possess soft bodies, diverse behaviour, elaborate skin patterning capabilities and a sophisticated visual system that controls body patterning for communication and camouflage (Packard 1995; Hanlon & Messenger 1996; Messenger 2001).

Cephalopods form a key component of the food chain and are preyed upon by nearly all of the major carnivores in the ocean – an enormous variety of marine mammals, diving birds and teleost and elasmobranch fishes. Their primary defence is visual camouflage (Hanlon & Messenger 1996). The diversity of visual systems represented by these predators is quite extraordinary and the camouflaged body patterns of cephalopods have evolved in response to these selective pressures. Benthic shallow-water cephalopods have rapid adaptive camouflage so that they can move about freely (foraging, finding mates, etc.) in multiple ecohabitats and avoid visual predation by tuning their camouflage to nearly any visual background in their natural ranges.

Allen, J., Mäthger, L., Barbosa, A. & Hanlon, R. 2009. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. Journal of Comparative Physiology A, 195, 547–555.
Allen, J. J., Mäthger, L. M., Barbosa, A.et al. 2010. Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proceedings of the Royal Society, Series B, 277, 1031–1039.
Barbosa, A., Mäthger, L. M., Chubb, C.et al. 2007. Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. Journal of Experimental Biology, 210, 1139–1147.
Barbosa, A., Mäthger, L., Buresch, K.et al. 2008a. Cuttlefish camouflage: the effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vision Research, 48, 1242–1253.
Barbosa, A., Litman, L. & Hanlon, R. T. 2008b. Changeable cuttlefish camouflage is influenced by horizontal and vertical aspects of the visual background. Journal of Comparative Physiology A, 194, 405–413.
Chiao, C. C. & Hanlon, R. T. 2001a. Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. Journal of Experimental Biology, 204, 2119–2125.
Chiao, C. C. & Hanlon, R. T. 2001b. Cuttlefish cue visually on area – not shape or aspect ratio – of light objects in the substrate to produce disruptive body patterns for camouflage. Biological Bulletin, 201, 269–270.
Chiao, C. C., Kelman, E. J. & Hanlon, R. T. 2005. Disruptive body pattern of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds. Biological Bulletin, 208, 7–11.
Chiao, C. C., Chubb, C. & Hanlon, R. T. 2007. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vision Research, 47, 2223–2235.
Chiao, C. C., Chubb, C., Buresch, K., Siemann, L. & Hanlon, R. T. 2009. The scaling effects of substrate texture on camouflage patterning in cuttlefish. Vision Research, 49, 1647–1656.
Chiao, C. C., Chubb, C., Buresch, K.et al. 2010. Mottle camouflage patterns in cuttlefish: quantitative characterization and visual stimuli that evoke them. Journal of Experimental Biology, 213, 187–199.
Cott, H. B. 1940. Adaptive Coloration in Animals. London: Methuen.
Dubas, F., Hanlon, R. T., Ferguson, G. P. & Pinsker, H. M. 1986. Localization and stimulation of chromatophore motoneurones in the brain of the squid, Lolliguncula brevis. Journal of Experimental Biology, 121, 1–25.
Edmunds, M. 1974. Defence in Animals: A Survey of Anti-Predator Defences. Harlow, UK: Longman.
Endler, J. A. 1984. Progressive background matching in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22, 187–231.
Froesch, D. & Messenger, J. B. 1978. On leucophores and the chromatic unit of Octopus vulgaris. Journal of Zoology (London), 186, 163–173.
Hanlon, R. T. 1988. Behavioral and body patterning characters useful in taxonomy and field identification of cephalopods. Malacologia, 29, 247–264.
Hanlon, R. T. 2007. Cephalopod dynamic camouflage. Current Biology, 17, R400–R404.
Hanlon, R. T. & Messenger, J. B. 1988. Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society of London, Series B, 320, 437–487.
Hanlon, R. T. & Messenger, J. B. 1996. Cephalopod Behaviour. Cambridge, UK: Cambridge University Press.
Hanlon, R. T., Forsythe, J. W. & Joneschild, D. E. 1999. Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66, 1–22.
Hanlon, R. T., Naud, M.-J., Forsythe, J. W.et al. 2007. Adaptable night camouflage by cuttlefish. American Naturalist, 169, 543–551.
Hanlon, , R. T., Conroy, L. & Forsythe, J. W. 2008. Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia. Biological Journal of the Linnean Society, 93, 23–38.
Hanlon, R. T., Chiao, C., Mäthger, L.et al. 2009. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philosophical Transactions of the Royal Society, Series B, 364, 429–437.
Hanlon, R. T., Watson, A. C. & Barbosa, A. 2010. A ‘mimic octopus’ in the Atlantic: flatfish mimicry and camouflage by Macrotritopus defilippi. Biological Bulletin, 218, 15–24.
Holmes, W. 1940. The colour changes and colour patterns of Sepia officinalis L. Proceedings of the Zoological Society of London A, 110, 2–35.
Huffard, C. L. 2006. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defences. Journal of Experimental Biology, 209, 3697–3707.
Huffard, C. L. 2007. Ethogram of Abdopus aculeatus (D'Orbigny, 1834) (Cephalopoda: Octopodidae): can behavioural characters inform octopodid taxonomy and systematics? Journal of Molluscan Studies, 73, 185–193.
Huffard, C. L., Boneka, F. & Full, R. J. 2005. Underwater bipedal locomotion by octopuses in disguise. Science, 307, 1927.
Kelman, E., Baddeley, O. R., Shohet, A. & Osorio, D. 2007. Perception of visual texture and the expression of disruptive camouflage by the cuttlefish, Sepia officinalis. Proceedings of the Royal Society, Series B, 274, 1369–1375.
Kelman, E., Osorio, D. & Baddeley, R. 2008. A review of cuttlefish camouflage and object recognition and evidence for depth perception. Journal of Experimental Biology, 211, 1757–1763.
Langridge, K. V. 2006. Symmetrical crypsis and asymmetrical signalling in the cuttlefish Sepia officinalis. Proceedings of the Royal Society, Series B, 273, 959–967.
Langridge, K. V. 2009. Cuttlefish use startle displays, but not against large predators. Animal Behaviour, 77, 847–856.
Lythgoe, J. N. 1979. The Ecology of Vision. Oxford, UK: Oxford University Press.
Marshall, N. J. & Messenger, J. B. 1996. Colour-blind camouflage. Nature, 382, 408–409.
Marshall, N. J., Jennings, K. J., McFarland, W. N., Loew, E. R. & Losey, G. S. 2003. Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia, 3, 467–480.
Martin, P. & Bateson, P. 2007. Measuring Behaviour: An Introductory Guide, 3rd edn. Cambridge, UK: Cambridge University Press.
Mäthger, L. M. & Hanlon, R. T. 2006. Anatomical basis for camouflaged polarized light communication in squid. Biology Letters, 2, 494–496.
Mäthger, L. M. & Hanlon, R. T. 2007. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and Tissue Research, 329, 179–186.
Mäthger, L. M., Barbosa, A., Miner, S. & Hanlon, R. T. 2006. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Research, 46, 1746–1753.
Mäthger, L. M., Chiao, C. C., Barbosa, A.et al. 2007. Disruptive coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis. Journal of Experimental Biology, 210, 2657–2666.
Mäthger, L. M., Chiao, C.-C., Barbosa, A. & Hanlon, R. T. 2008. Color matching on natural substrates in cuttlefish, Sepia officinalis. Journal of Comparative Physiology A, 194, 577–585.
Mäthger, L. M., Denton, E. J., Marshall, N. J. & Hanlon, R. T. 2009. Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 6 (Suppl 2), S149–S163.
Mäthger, L. M., Roberts, S. B. & Hanlon, R. T. 2010. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biology Letters, 6, 600–603.
Merilaita, S., Lyytinen, A. & Mappes, J. 2001. Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society, Series B, 268, 1925–1929.
Messenger, J. B. 2001. Cephalopod chromatophores: neurobiology and natural history. Biological Reviews, 76, 473–528.
Norman, M. D., Finn, J. & Tregenza, T. 2001. Dynamic mimicry in an Indo-Malayan octopus. Proceedings of the Royal Society of London, Series B, 268, 1755–1758.
Packard, A. 1995. Organization of cephalopod chromatophore systems: a neuromuscular image-generator. In Cephalopod Neurobiology, eds. Abbott, N. J., Williamson, R. & Maddock, L. Oxford, UK: Oxford University Press, pp. 331–368.
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford, UK: Oxford University Press.
Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. 2006. Cuttlefish response to visual orientation of substrates, water flow and a model of motion camouflage. Journal of Experimental Biology, 209, 4717–4723.
Shohet, A., Baddeley, O., Anderson, J. & Osorio, D. 2007. Cuttlefish camouflage: a quantitative study of patterning. Biological Journal of the Linnean Society, 92, 335–345.
Skelhorn, J., Rowland, H. M., Speed, M. P. & Ruxton, G. D. 2010. Masquerade: camouflage without crypsis. Science, 327, 51.
Spottiswoode, C. N. & Stevens, M. 2010. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs. Proceedings of the National Academy of Sciences of the USA, 107, 8672–8676.
Stevens, M. 2007. Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society, Series B, 274, 1457–1464.
Stevens, M., Cuthill, I. C., Windsor, A. M. M. & Walker, H. J. 2006. Disruptive contrast in animal camouflage. Proceedings of the Royal Society, Series B, 273, 2433–2438.
Stevens, M. & Merilaita, S. 2009a. Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society, Series B, 364, 423–427.
Stevens, M. & Merilaita, S. 2009b. Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society, Series B, 364, 481–488.
Stoddard, M. S. & Stevens, M. 2010. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird's eye. Proceedings of the Royal Society, Series B, 277, 1387–1393.
Sutherland, R. L., Mäthger, L. M., Hanlon, R. T., Urbas, A. M. & Stone, M. O. 2008. Cephalopod coloration model. II. Multiple layer skin effects. Journal of the Optical Society of America A, 25, 2044–2054.
Thayer, G. H. 1909. Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer's Discoveries. New York: Macmillan.
Wickler, W. 1968. Mimicry. London: Weidenfeld & Nicolson.
Zylinski, S., Osorio, D. & Shohet, A. J. 2009a. Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officinalis. Philosophical Transactions of the Royal Society, Series B, 364, 439–448.
Zylinski, S., Osorio, D. & Shohet, A. 2009b. Edge detection and texture classification by cuttlefish. Journal of Vision, 9, 1–10.