Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T22:47:08.533Z Has data issue: false hasContentIssue false

8 - Spin-orbit interactions of light in isotropic media

Published online by Cambridge University Press:  05 December 2012

K. Y. Bliokh
Affiliation:
National University of Ireland
A. Aiello
Affiliation:
Universität Erlangen-Nürnberg
M. A. Alonso
Affiliation:
University of Rochester
David L. Andrews
Affiliation:
University of East Anglia
Mohamed Babiker
Affiliation:
University of York
Get access

Summary

Introduction

Spin-orbit interaction in quantum physics

The term spin-orbit interaction (SOI) is known from quantum physics, where it describes the coupling between the spin and orbital angular momentum (AM) of electrons or other quantum particles [1]. The SOI is usually interpreted as an electromagnetic interaction of the moving magnetic moment of the electron with an external electric field. However, in central fields the SOI Hamiltonian becomes proportional to the product of the spin AM (SAM) and orbital AM (OAM). Furthermore, the geometric Berry-phase description of the SOI uncovered that it is basically related to the intrinsic AM properties of the particle and is largely independent of the particular character of interaction with the external field [2–4]. The SOI can take various forms in different systems, but the unifying feature in all cases is the coupling between the spin and momentum of the particle [5].

There are two basic manifestations of the SOI of electrons. First, the SOI brings about the fine splitting of the energy levels in the finite orbital motions, e.g., in potential wells or magnetic fields [1, 6, 7]. This can be regarded as the Berry-phase contribution to the quantization of orbits [8–11]. Second, due to the SOI upon free motion in an external field the electron undergoes a transverse spin-dependent deflection known as the spin Hall effect [4, 5, 12–14]. This effect is a dynamical (transport) manifestation of the Berry phase closely related to the Coriolis effect [15, 16], and conservation of the total AM of the particle [12].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Berestetskii, V.B., Lifshitz, E.M., and Pitaevskii, L.P. (1982). Quantum electrodynamics, 2nd edn. Oxford: Pergamon Press.
[2] Mathur, H. (1991). Thomas precession spin-orbit interaction, and Berry's phase. Phys. Rev. Lett., 67, 3325–7.Google Scholar
[3] Bolte, J. and Keppeler, S. (1999). A semiclassical approach to the Dirac equation. Ann. Phys., 274, 125–62.CrossRefGoogle Scholar
[4] Bérard, A. and Mohrbach, H. (2006). Spin Hall effect and Berry phase of spinning particles. Phys. Lett.A, 352, 190–5.Google Scholar
[5] Rashba, E.I. (2006). Spin-orbit coupling and spin transport. PhysicaE, 34, 31–5.CrossRefGoogle Scholar
[6] Rashba, E.I. and Sherman, E.Y. (1988). Spin-orbital band splitting in symmetric quantum wells. Phys. Lett.A, 129, 175–9.CrossRefGoogle Scholar
[7] Shen, S.Q., Ma, M., Xie, X.C., and Zhang, F.C. (2004). Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field. Phys. Rev. Lett., 92, 256603.Google Scholar
[8] Keppeler, S. (2003). Semiclassical quantization rules for the Dirac and Pauli equations. Ann. Phys., 304, 40–71.Google Scholar
[9] Novoselov, K.S., Geim, A.K., Morozov, S.V. et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.Google Scholar
[10] Zhang, Y.B., Tan, Y. W., Stormer, H.L., and Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201–4.CrossRefGoogle Scholar
[11] Gosselin, P., Boumrar, H., and Mohrbach, H. (2008). Semiclassical quantization of electrons in magnetic fields: The generalized Peierls substitution. EPL 84, 50002.Google Scholar
[12] Murakami, S., Nagaosa, N., and Zhang, S.-C. (2003). Dissipationless quantum spin current at room temperature. Science, 301, 1348–51.Google Scholar
[13] Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N.A., Jungwirth, T., and MacDonald, A. H. (2004). Universal intrinsic spin Hall effect. Phys. Rev. Lett., 92, 126603.Google Scholar
[14] Xiao, D., Chang, M.-C., and Niu, Q. (2010). Berry phase effects on electronic properties. Rev. Mod. Phys., 82, 19592007.Google Scholar
[15] Serebrennikov, A.Y. (2006). Coriolis force geometric phase, and spin-electric coupling in semiconductors. Phys. Rev.B, 73, 195317.Google Scholar
[16] Serebrennikov, A.Y. (2008). Coupling of electron spin with its rotation in semiconductors. Phys. Lett.A, 372, 1106–8.CrossRefGoogle Scholar
[17] Allen, L., Beijersbergen, M.W., Spreeuw, R. J. C., and Woerdman, J.P. (1992). Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev.A, 45, 8185–9.Google Scholar
[18] Allen, L., Padgett, M.J., and Babiker, M. (1999). The orbital angular momentum of light. Prog. Opt., 39, 291–372.Google Scholar
[19] Allen, L., Barnett, S.M., and Padgett, M.J. (2003). Optical Angular Momentum. London: Taylor & Francis.CrossRef
[20] Bekshaev, A., Soskin, M., and Vasnetsov, M. (2008). Paraxial Light Beams with Angular Momentum. New York: Nova Science Publishers.
[21] Franke-Arnold, S., Allen, L., and Padgett, M.J. (2008). Advances in optical angular momentum. Laser & Photon. Rev., 2, 299–313.CrossRefGoogle Scholar
[22] Berry, M.V. (1997). Paraxial beams of spinning light. Proc. SPIE, 3487, 6–11.
[23] O'Neil, A.T., MacVicar, I., Allen, L., and Padgett, M.J. (2002). Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601.Google Scholar
[24] Bliokh, K.Y., Alonso, M.A., Ostrovskaya, E.A., and Aiello, A. (2010). Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. RevA, 82, 063825.Google Scholar
[25] Bekshaev, A., Bliokh, K.Y., and Soskin, M. (2011). Internal flows and energy circulation in light beams. J. Opt., 13, 053001.Google Scholar
[26] Aiello, A. and Bliokh, K. Y. (2012). Intrinsic and extrinsic orbital angular momentum of light. (in preparation).
[27] Bomzon, Z., Gu, M., and Shamir, J. (2006). Angular momentum and geometric phases in tightly-focused circularly polarized plane waves. Appl. Phys. Lett., 89, 241104.Google Scholar
[28] Zhao, Y., Edgar, J.S., Jeffries, G.D. M., McGloin, D., and Chiu, D.T. (2007). Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett., 99, 073901.CrossRefGoogle Scholar
[29] Schwartz, C. and Dogariu, A. (2006). Conservation of angular momentum of light in single scattering. Opt. Express, 14, 8425–33.CrossRefGoogle Scholar
[30] Haefner, D., Sukhov, S., and Dogariu, A. (2009). Spin Hall Effect of light in spherical geometry. Phys. Rev. Lett., 102, 123903.Google Scholar
[31] Rodríguez-Herrera, O.G., Lara, D., Bliokh, K.Y., Ostrovskaya, E.A., and Dainty, C. (2010). Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett., 104, 253601.Google Scholar
[32] Dooghin, A.V., Kundikova, N.D., Liberman, V. S., and Zel'dovich, B.Y. (1992). Optical Magnus effect. Phys. Rev.A, 45, 8204.Google Scholar
[33] Darsht, M.Y., Zel'dovich, B.Y., Kataevskaya, I.V., and Kundikova, N.D. (1995). Formation of an isolated wavefront dislocation. JETP, 80, 817–821 [Zh. Eksp. Theor. Phys., 107, 1464–72].Google Scholar
[34] Volyar, A.V., Fadeeva, T.A., and Groshenko, N.A. (1997). Angular momentum of the field of a few-mode waveguide: conversion of the angular momentum. Tech. Phys. Lett., 23, 883–6.CrossRefGoogle Scholar
[35] Volyar, A.V., Zhilaitis, V.Z., and Shvedov, V.G. (1998). Spin-orbit interaction in the field of an optical vortex of a few-mode fiber. Tech. Phys. Lett., 24, 826–8.Google Scholar
[36] Leary, C.C., Raymer, M.G., and van Enk, S.J. (2009). Spin and orbital rotations of electrons and photons via spin-orbit interaction. Phys. Rev.A, 80, 061804(R).Google Scholar
[37] Bliokh, K.Y. and Frolov, D.Y. (2005). Spin-orbit interaction of photons and fine splitting of levels in ring dielectric resonator. Opt. Commun., 250, 321–7.CrossRefGoogle Scholar
[38] Liberman, V.S. and Zel'dovich, B.Y. (1992). Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev.A, 46, 5199–207.Google Scholar
[39] Bliokh, K.Y. and Bliokh, Y. P. (2004). Topological spin transport of photons: the optical Magnus effect and Berry phase. Phys. Lett.A, 333, 181–6; physics/0402110.Google Scholar
[40] Onoda, M., Murakami, S., and Nagaosa, N. (2004). Hall effect of light. Phys. Rev. Lett., 93, 083901.Google Scholar
[41] Bliokh, K.Y. and Bliokh, Y.P. (2006). Conservation of angular momentum, transverse shift and spin Hall effect in reflection and refraction of an electromagnetic wave packetPhys. Rev. Lett., 96, 073903.Google Scholar
[42] Hosten, O. and Kwiat, P. (2008). Observation of the spin Hall effect of light via weak measurements. Science, 319, 787–90.Google Scholar
[43] Bliokh, K.Y., Niv, A., Kleiner, V., and Hasman, E. (2008). Geometrodynamics of spinning light. Nature Photon., 2, 748–53.Google Scholar
[44] Aiello, A., Lindlein, N., Marquardt, C., and Leuchs, G. (2009). Transverse angular momentum and geometric spin Hall effect of light. Phys. Rev. Lett., 103, 100401.CrossRefGoogle Scholar
[45] Baranova, N.B., Savchenko, A.Y., and Zel'dovich, B.Y. (1994). Transverse shift of a focal spot due to switching of the sign of circular-polarization. JETP Lett., 59, 232–4.Google Scholar
[46] Zel'dovich, B.Y., Kundikova, N.D., and Rogacheva, L.F. (1994). Observed transverse shift of a focal spot upon a change in the sign of circular polarization. JETP Lett., 59, 766–9.Google Scholar
[47] Bliokh, K.Y., Gorodetski, Y., Kleiner, V., and Hasman, E. (2008). Coriolis effect in optics: unified geometric phase and spin-Hall effect. Phys. Rev. Lett., 101, 030404.Google Scholar
[48] Fedoseyev, V.G. (2001). Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Opt. Commun., 193, 9–18.Google Scholar
[49] Dasgupta, R. and Gupta, P.K. (2006). Experimental observation of spin-independent transverse shift of the centre of gravity of a reflected Laguerre–Gaussian light beam. Opt. Commun., 257, 91–6.CrossRefGoogle Scholar
[50] Bliokh, K.Y. (2006). Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett., 97, 043901.Google Scholar
[51] Bliokh, K.Y., Shadrivov, I.V., and Kivshar, Y.S. (2009). Goos–Hanchen and Imbert–Fedorov shifts of polarized vortex beams. Opt. Lett., 34, 389–91.Google Scholar
[52] Bekshaev, A.Y. (2009). Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. J. Opt. A: Pure Appl. Opt., 11, 094003.Google Scholar
[53] Garbin, V., Volpe, G., Ferrari, E., Versluis, M., Cojoc, D., and Petrov, D. (2009). Mie scattering distinguishes the topological charge of an optical vortex: a homage to Gustav Mie. New J. Phys., 11, 013046.Google Scholar
[54] Merano, M., Hermosa, N., Woerdman, J.P., and Aiello, A. (2010). How orbital angular momentum affects beam shifts in optical reflection. Phys. Rev.A, 82, 023817.Google Scholar
[55] Biener, G., Niv, A., Kleiner, V., and Hasman, E. (2002). ormation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt. Lett., 27, 1875–77.Google Scholar
[56] Bomzon, Z., Biener, G., Kleiner, V., and Hasman, E. (2002). Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 27, 1141–3.Google Scholar
[57] Berry, M.V., Jeffrey, M.R., and Mansuripur, M. (2005). Orbital and spin angular momentum in conical diffraction. J. Opt. A: Pure Appl. Opt., 7, 685–90.Google Scholar
[58] Marrucci, L., Manzo, C., and Paparo, D. (2006). Optical spin-to-orbit angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905.Google Scholar
[59] Calvo, G.F. and Picón, A. (2007). Spin-induced angular momentum switching. Opt. Lett., 32, 838–40.Google Scholar
[60] Nagali, E., Sciarrino, F., De Martini, F. et al. (2009). Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 103, 013601.CrossRefGoogle Scholar
[61] Brasselet, E., Izdebskaya, Y., Shvedov, V., Desyatnikov, A., Krolikowski, W., and Kivshar, Y.S. (2009). Dynamics of optical spin-orbit coupling in uniaxial crystals. Opt. Lett., 34, 1021–3.Google Scholar
[62] Brasselet, E., Murazawa, N., Misawa, H., and Juodkazis, S. (2009). Optical vortices from liquid crystal droplets. Phys. Rev. Lett., 103, 103903.CrossRefGoogle Scholar
[63] Fadeyeva, T.A., Rubass, A.F., and Volyar, A.V. (2009). Transverse shift of a higher-order paraxial vortex-beam induced by a homogeneous anisotropic medium. Phys. Rev.A, 79, 053815.Google Scholar
[64] Brasselet, E. and Loussert, C. (2011). Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons. Opt. Lett., 36, 719–21.Google Scholar
[65] Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V., and Hasman, E. (2011). Optical spin Hall effects in plasmonic chains. Nano Lett., 11, 2038–42.Google Scholar
[66] Hasman, E., Biener, G., Niv, A., and Kleiner, V. (2005). Space-variant polarization manipulation. Prog. Opt., 47, 215–89.Google Scholar
[67] Marrucci, L., Karimi, E., Slussarenko, S. et al. (2011). Spin-to-orbit conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001.Google Scholar
[68] Fedorov, F.I. (1955). K teorii polnovo otrazenija. Dokl. Akad. Nauk SSSR, 105, 465–7. English translation available at http://master.basnet.by/congress2011/symposium/spbi.pdf.Google Scholar
[69] Schilling, H. (1965). Die strahlversetzung bei der reflexion linear oder elliptisch polarisierter ebener wellen an der trennebene zwischen absorbierenden medien. Ann. Phys. (Berlin), 16, 122–34.Google Scholar
[70] Imbert, C. (1972). Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys. Rev.D, 5, 787–96.Google Scholar
[71] Player, M.A. (1987). Angular momentum balance and transverse shift on reflection of light. J. Phys. A: Math. Gen., 20, 3667–78.Google Scholar
[72] Fedoseyev, V.G. (1988). Conservation laws and transverse motion of energy on reflection and transmission of electromagnetic waves. J. Phys. A: Math. Gen., 21, 2045–59.Google Scholar
[73] Dutriaux, L., Le Floch, A., and Bretenaker, F. (1993). Measurement of the transverse displacement at total reflection by helicoidal laser eigenstates. Europhys. Lett., 24, 345–9.Google Scholar
[74] Bialynicki-Birula, I. and Bialynicka-Birula, Z. (1987). Berry phase in the relativistic theory of spinning particles. Phys. Rev.D, 35, 2383–7.Google Scholar
[75] Skagerstam, B.-S. K. (1992). Localization of massless spinning particles and the Berry phase. arXiv:hep-th/9210054.
[76] Duval, C., Horváth, Z., and Horváthy, P.A. (2006). Fermat principle for spinning light. Phys. Rev.D, 74, 021701(R).Google Scholar
[77] Hawton, M. and Baylis, W.E. (2005). Angular momentum and the geometrical gauge of localized photon states. Phys. Rev.A, 71, 033816.Google Scholar
[78] Mashhoon, B. (1988). Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett., 61, 2639–42.Google Scholar
[79] Mashhoon, B. (1989). Electrodynamics in a rotating frame of reference. Phys. Lett.A, 139, 103–8.Google Scholar
[80] Mashhoon, B. (2009). Optics of rotating systems. Phys. Rev.A, 79, 062111.Google Scholar
[81] Ross, J.N. (1984). The rotation of the polarization in low birefringence monomode optical fibers due to geometric effects. Opt. Quantum Electron., 16, 455–61.Google Scholar
[82] Chiao, R.Y. and Wu, Y.S. (1986). Manifestations of Berry topological phase for the photon, Phys. Rev. Lett., 57 933–6.Google Scholar
[83] Tomita, A. and Chiao, R.Y. (1986). Observation of Berry topological phase by use of an optical fiber. Phys. Rev. Lett., 57, 937–40.Google Scholar
[84] Haldane, F.D.M. (1986). Path dependence of the geometric rotation of polarization in optical fibers. Opt. Lett., 11, 730–2.CrossRefGoogle Scholar
[85] Berry, M.V. (1987). Interpreting the anholonomy of coiled light. Nature, 326, 277–8.CrossRefGoogle Scholar
[86] Segert, J. (1987). Photon Berry phase as a classical topological effect. Phys. Rev.A, 36, 10–15.CrossRefGoogle Scholar
[87] Jordan, T.F. (1987). Direct calculation of the Berry phase for spins and helicities. J. Math. Phys., 28, 1759–60.Google Scholar
[88] Lipson, S.G. (1990). Berry's phase in optical interferometry – a simple derivation. Opt. Lett., 15, 154–5.Google Scholar
[89] Galvez, E.J. and Holmes, C.D. (1999). Geometric phase of optical rotators. J. Opt. Soc. Am.A, 16, 19811985.Google Scholar
[90] Shapere, A. and Wilczek, F. (1989). Geometric Phases in Physics. Singapore: World Scientific.
[91] Markovski, B. and Vinitsky, S.I. (1989). Topological Phases in Quantum Theory. Singapore: World Scientific.
[92] Vinitskii, S.I., Derbov, V.L., Dubovik, V.M., Markovski, B.L., and Stepanovskii, Y. P. (1990). Topological phases in quantum-mechanics and polarization opticsUsp. Fiz. Nauk, 160(6) 1–49 [Sov. Phys. Usp., 33, 403].Google Scholar
[93] Bhandari, R. (1997). Polarization of light and topological phases. Phys. Rep., 281, 2–64.Google Scholar
[94] Galvez, E.J. (2002). Applications of geometric phase in optics. In Recent Research Developments in Optics 2. Kerala: Research Signpost pp. 165–82.
[95] Ben-Aryeh, Y. (2004). Berry and Pancharatnam topological phases of atomic and optical systems. J. Opt. B: Quantum Semiclass., 6, R1–18.Google Scholar
[96] Malykin, G.B. and Pozdnyakova, V.I. (2004). Geometric phases in singlemode fiber lightguides and fiber ring interferometers. Physics–Uspekhi, 47, 289–308.CrossRefGoogle Scholar
[97] Bliokh, K.Y. (2009). Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A: Pure Appl. Opt., 11, 094009.Google Scholar
[98] Fang, Z., Nagaosa, N., Takahashi, K.S. et al. (2003) The anomalous Hall effect and magnetic monopoles in momentum space. Science, 302, 92–5.CrossRefGoogle Scholar
[99] Hannay, J.H. (1998). The Majorana representation of polarization, and the Berry phase of light. J. Mod. Opt., 45, 1001–8.CrossRefGoogle Scholar
[100] Opat, G.I. (1991). The precession of a Foucault pendulum viewed as a beat phenomenon of a conical pendulum subject to a Coriolis force. Am. J. Phys., 59, 822–3.Google Scholar
[101] Khein, A. and Nelson, D.F. (1992). Hannay angle study of the Foucault pendulum in action-angle variables. Am. J. Phys. 61, 170–4.Google Scholar
[102] Garetz, B.A. and Arnold, S. (1979). Variable frequency-shifting of circularly polarized laser-radiation via a rotating half-wave retardation plate. Opt. Commun., 31, 1–3.CrossRefGoogle Scholar
[103] Garetz, B.A. (1981). Angular Doppler-effect. J. Opt. Soc. Am., 71, 609–11.Google Scholar
[104] Allen, L., Babiker, M., and Power, W.L. (1994). Azimuthal Doppler shift shift in light beams with orbital angular momentum. Opt. Commun., 112, 141–4.CrossRefGoogle Scholar
[105] Bialynicki-Birula, I. and Bialynicka-Birula, Z. (1997). Rotational frequency shift. Phys. Rev. Lett., 78, 2539–42.Google Scholar
[106] Courtial, J., Dholakia, K., Robertson, D.A., Allen, L., and Padgett, M.J. (1998). Rotational frequency shift of a light beam. Phys. Rev. Lett., 81, 4828–30.CrossRefGoogle Scholar
[107] Bomzon, Z. and Gu, M. (2007). Space-variant geometrical phases in focused cylindrical light beams. Opt. Lett., 32, 3017–9.CrossRefGoogle Scholar
[108] Gorodetski, Y., Niv., A., Kleiner, V., and Hasman, E. (2008). Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett., 101, 043903.CrossRefGoogle Scholar
[109] Akhiezer, A.I. and Berestetskii, V.B. (1965). Quantum Electrodynamics. New York: Interscience Publishers.
[110] van Enk, S.J. and Nienhuis, G. (1992). Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun., 94, 147–58.CrossRefGoogle Scholar
[111] Aiello, A., Merano, M., and Woerdman, J.P. (2009). Duality between spatial and angular shift in optical reflection. Phys. Rev.A, 80, 061801(R).CrossRefGoogle Scholar
[112] Barnett, S.M. and Allen, L. (1994). Orbital angular-momentum and nonparaxial light-beams. Opt. Commun., 110, 670–8.CrossRefGoogle Scholar
[113] van Enk, S.J. and Nienhuis, G. (1994). Spin and orbital angular-momentum of photons. EuroPhys. Lett., 25, 497–501.CrossRefGoogle Scholar
[114] van Enk, S.J. and Nienhuis, G. (1994). Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt., 41, 963–77.Google Scholar
[115] Barnett, S.M. (2010). Rotation of electromagnetic fields and the nature of optical angular momentum. J. Mod. Opt., 57, 1339–43.CrossRefGoogle Scholar
[116] Pryce, M.H.L. (1948). The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. Proc. R. Soc. London, Ser.A, 195.Google Scholar
[117] Hawton, M. and Baylis, W.E. (2001). Photon position operators and localized bases. Phys. Rev.A, 64, 012101.Google Scholar
[118] Oemrawsingh, S.S. R., Eliel, E.R., Nienhuis, G., and Woerdman, J.P. (2004). Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices. J. Opt. Soc. Am.A, 21, 2089–96.Google Scholar
[119] Kuratsuji, H. and Kakigi, S. (1988). Maxwell-Schrodinger equation for polarized light and evolution of Stokes parameters. Phys. Rev. Lett., 80, 1888–91.CrossRefGoogle Scholar
[120] Bliokh, K.Y., Frolov, D.Y., and Kravtsov, Y.A. (2007). Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium. Phys. Rev.A, 75, 053821.Google Scholar
[121] Kravtsov, Y.A., Bieg, B., and Bliokh, K.Y. (2007). Stokes-vector evolution in a weakly anisotropic inhomogeneous medium. J. Opt. Soc. Am.A, 24, 3388–96.CrossRefGoogle Scholar
[122] Born, M. and Wolf, E. (2005). Principles of Optics, 7th edn. London: Pergamon.
[123] Berry, M.V. (2009). Optical currents. J. Opt. A: Pure Appl. Opt., 11, 094001.Google Scholar
[124] Bekshaev, A.Y. and Soskin, M.S. (2007). Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332–48.Google Scholar
[125] Li, C.-F. (2009). Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys. Rev.A, 80, 063814.Google Scholar
[126] Bialynicki-Birula, I. (1996). Photon wave function. Prog. Opt., 36, 245–94.Google Scholar
[127] Bergmann, J.E.S., Mohammadi, S.M., Daldorff, L.K.S. et al. (2008). Conservation laws in generalized Riemann–Silberstein electrodynamics. arXiv:0803.2383v6.
[128] Durnin, J. (1987). Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am.A, 4, 651–4.Google Scholar
[129] Bouchal, Z. and Olivik, M. (1995). Non-diffractive vector Bessel beams. J. Mod. Opt., 42, 1555–66.Google Scholar
[130] Arlt, J. and Dholakia, K. (2000). Generation of high-order Bessel beams by use of an axicon. Opt. Commun., 177, 297–301.CrossRefGoogle Scholar
[131] Volke-Sepulveda, K., Garcés-Chavez, V., Chávez-Cerda, S., Arlt, J., and Dholakia, K. (2002). Orbital angular momentum of a high-order Bessel light beam. J. Opt. B: Quantum Semiclass. Opt., 4, S82–9.Google Scholar
[132] Jáuregui, R. and Hacyan, S. (2005). Quantum-mechanical properties of Bessel beams. Phys. Rev.A, 71, 033411.Google Scholar
[133] Berry, M.V. and Mount, K.E. (1972). Semiclassical approximations in wave mechanics. Rep. Prog. Phys., 35, 315–97.Google Scholar
[134] Kravtsov, Y.A. and Orlov, Y.I. (1999). Caustics, Catastrophes, and Wave Fields, 2nd edn. Berlin: Springer-Verlag.
[135] Berry, M.V. and McDonald, K.T. (2008). Exact and geometrical optics energy trajectories in twisted beams. J. Opt. A: Pure Appl. Opt., 10, 035005.Google Scholar
[136] Yang, S., Chen, W., Nelson, R.L., and Zhan, Q. (2009). Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett., 34, 3047–9.Google Scholar
[137] Wilkinson, M. (1984). An example of phase holonomy in WKB theory. J. Phys. A: Math. Gen., 17, 3459–76.Google Scholar
[138] Kuratsuji, H. and Iida, S. (1985). Semiclassical quantization with a quantum adiabatic phase. Phys. Lett.A, 111, 220–2.Google Scholar
[139] Littlejohn, R.G. and Flynn, W.G. (1991). Geometrical phases and the Bohr-Sommerfeld quantization of multicomponent wave fields. Phys. Rev. Lett., 66, 2839–42.Google Scholar
[140] Mikitik, G.P. and Sharlai, Y.V. (1999). Manifestation of Berry's phase in metal physics. Phys. Rev. Lett., 82, 2147–50.Google Scholar
[141] Berry, M.V. (2011). Lateral and transverse shifts in reflected dipole radiation. Proc. R. Soc.A, 467, 2500–19.Google Scholar
[142] Nieminen, T.A., Stilgoe, A.B., Heckenberg, N.R., and Rubinsztein-Dunlop, H. (2008). Angular momentum of a strongly focused Gaussian beam. J. Opt. A: Pure Appl. Opt., 10, 115005.Google Scholar
[143] Zhan, Q. (2006). Properties of circularly polarized vortex beams. Opt. Lett., 31, 867–9.Google Scholar
[144] Zhao, Y., Shapiro, D., Mcgloin, D., Chiu, D.T., and Marchesini, S. (2009). Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Opt. Express, 17, 23316–22.CrossRefGoogle Scholar
[145] Chen, B. and Pu, J. (2009). Tight focusing of elliptically polarized vortex beams. Appl. Opt., 48, 1288–94.Google Scholar
[146] Monteiro, P.B., Neto, P.A.M., and Nussenzveig, H.M. (2009). Angular momentum of focused beams: beyond the paraxial approximation. Phys. Rev.A, 79, 033830.Google Scholar
[147] Bekshaev, A.Y. (2010). A simple analytical model of the angular momentum transformation in strongly focused light beams. Cent. Eur. J. Phys., 8, 947–60.CrossRefGoogle Scholar
[148] Wolf, E. (1959). Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proc. R. Soc. London.Ser. A, 253, 349–57.Google Scholar
[149] Richards, B. and Wolf, E. (1959). Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. London.Ser. A, 253, 358–79.CrossRefGoogle Scholar
[150] Alonso, M.A. and Forbes, G.W. (2000). Uncertainty products for nonparaxial wave fields. J. Opt. Soc. Am.A, 17, 2391–402.CrossRefGoogle Scholar
[151] Alonso, M.A., Borghi, R., and Santarsiero, M. (2006). Nonparaxial fields with maximum joint spatial-directional localization. II. Vectorial case. J. Opt. Soc. Am.A, 23, 701–12.CrossRefGoogle Scholar
[152] Alonso, M.A. (2011). The effect of orbital angular momentum and helicity in the uncertainty-type relations between focal spot size and angular spread. J. Opt., 13, 064016.Google Scholar
[153] Bokor, N., Iketaki, Y., Watanabe, T., and Fujii, M. (2005). Investigation of polarization effects for high-numerical-aperture first-order Laguerre–Gaussian beams by 2D scaning with a single fluorescent microbead. Opt. Express, 13, 10440–7.Google Scholar
[154] Iketaki, Y., Watanabe, T., Bokor, N., and Fujii, M. (2007). Investigation of the centre intensity of first- and second-order Laguerre–Gaussian beams with linear and circular polarization. Opt. Lett., 32, 2357–9.Google Scholar
[155] Jackson, J.D. (1998). Classical Electrodynamics, 3rd edn. New York: Wiley & Sons.
[156] Moe, G. and Happer, W. (1977). Conservation of angular momentum for light propagating in a transparent anisotropic medium. J. Phys. B: Atom. Molec. Phys., 10, 1191–208.Google Scholar
[157] Schwartz, C. and Dogariu, A. (2006). Backscattered polarization patterns, optical vortices, and the angular momentum of light. Opt. Lett., 31, 1121–3.Google Scholar
[158] Vuong, L.T., Adam, A.J.L., Brok, J.M., Planken, P.C.M., and Urbach, H.P. (2010). Electromagnetic spin-orbit interactions via scattering of subwavelength apertures. Phys. Rev. Lett., 104, 083903.Google Scholar
[159] Rodríguez-Herrera, O.G., Lara, D., and Dainty, C. (2010). Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields. Opt. Express, 18, 5609–28.Google Scholar
[160] Vasnetsov, M.V., Marienko, I.G., and Soskin, M.S. (2000). Self-reconstruction of an optical vortex. JETP Lett., 71, 130–3.CrossRefGoogle Scholar
[161] Gorshkov, V.N., Kononenko, A.N., and Soskin, M.S. (2001). Diffraction and self-restoration of a severely screened vortex beam. SPIE Proc., 4403, 127–37.
[162] Anan'ev, Y.A. and Bekshaev, A.Y. (1996). Changes in the light beam structure induced by transmission through dispersive elements. II. Special cases. Opt. Spectrosc., 80, 445–52.Google Scholar
[163] Bekshaev, A.Y. and Popov, A.Y. (2002). Method of light beam orbital angular momentum evaluation by means of space-angle intensity moments. Ukr. J. Phys. Opt., 3, 249–57.CrossRefGoogle Scholar
[164] Goos, F. and Hänchen, H. (1947). Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys., 1, 333–46.CrossRefGoogle Scholar
[165] Artmann, K. (1948). Berechnung der Seitenversetzung des totalreflectierten Strahles. Ann. Phys., 2, 87–102.Google Scholar
[166] Bliokh, K.Y. and Bliokh, Y.P. (2007). Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. Phys. Rev.E, 75, 066609.Google Scholar
[167] Aiello, A. and Woerdman, J.P. (2008). Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts. Opt. Lett., 33, 1437–9.CrossRefGoogle Scholar
[168] Qin, Y., Li, Y., Feng, X., Xiao, Y.-F., Yang, H., and Gong, Q. (2011). Observation of the in-plane spin separation of light. Opt. Express, 19, 9636–45.CrossRefGoogle Scholar
[169] Merano, M., Aiello, A., van Exter, M.P., Eliel, E.R., and Woerdman, J.P. (2009). Observing angular deviations in the specular reflection of a light beam. Nature Photon., 3, 337–40.CrossRefGoogle Scholar
[170] Lotsch, H.K.V. (1970). Beam displacement at total reflection: the Goos-Hänchen shift. Optik 32, 116–37, 189–204, 299–319, 553–69.Google Scholar
[171] McGuirk, M. and Carniglia, C.K. (1976). An angular spectrum representation approach to the Goos–Hänchen shift. J. Opt. Soc. Am., 67, 103–7.CrossRefGoogle Scholar
[172] Wild, W.J. and Giles, C.L. (1982). Goos–Hänchen shifts from absorbing media. Phys. Rev.A, 25, 2099–101.Google Scholar
[173] Bretenaker, F., Le Floch, A., and Dutriaux, L. (1992). Direct measurement of the optical Goos–Hänchen effect in lasers. Phys. Rev. Lett., 17, 931–3.Google Scholar
[174] Pfleghaar, E., Marseille, A., and Weis, A. (1993). Quantitative investigation of the effect of resonant absorbers on the Goos–Hänchen shift. Phys. Rev. Lett., 70, 2281–4.Google Scholar
[175] Emile, O., Galstyan, T., Le Floch, A., and Bretenaker, F. (1995). Measurements of the nonlinear Goos–Hänchen effect for Gaussian optical beams. Phys. Rev. Lett., 75, 1511–3.Google Scholar
[176] Bonnet, C., Chauvat, D., Emile, O., Bretenaker, F. and Le Floch, A. (2001). Measurement of positive and negative Goos–Hänchen effects for metallic gratings near Wood anomalies. Opt. Lett., 26, 666–8.Google Scholar
[177] Berman, P.R. (2002). Goos–Hänchen shift in negatively refractive media. Phys. Rev.E, 66, 067603.Google Scholar
[178] Li, C.-F. (2003). Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett., 91, 133903.Google Scholar
[179] Fan, J., Dogariu, A., and Wang, L.J. (2003). Amplified total internal reflection. Opt. Express, 11, 299–308.Google Scholar
[180] Shadrivov, I.V., Zharov, A.A., and Kivshar, Y.S. (2003). Giant Goos–Hänchen effect at the reflection from left-handed metamaterials. Appl. Phys. Lett., 83, 2713–5.Google Scholar
[181] Felbacq, D., Moreau, A., and Smaâli, R. (2003). Goos–Hänchen effect in the gaps of photonic crystals. Opt. Lett., 28, 1633–5.Google Scholar
[182] Yin, X., Hesselink, L., Liu, Z., Fang, N., and Zhang, X. (2004). Large positive and negative lateral optical beam displacements due to surface plasmon resonance. Appl. Phys. Lett., 85, 372–4.Google Scholar
[183] Merano, M., Aiello, A., 't Hooft, G.W., van Exter, M.P., Eliel, E.R., and Woerdman, J.P. (2007). Observation of Goos–Hänchen shifts in metallic reflection. Opt. Express, 15, 15928–34.Google Scholar
[184] Ra, J.W., Bertoni, H.L., and Felsen, L.B. (1973). Reflection and transmission of beams at a dielectric interface. SIAM J. Appl. Math., 24, 396–413.Google Scholar
[185] Antar, Y.M. and Boerner, W.M. (1974). Gaussian beam interaction with a planar dielectric interface. Can. J. Phys., 52, 962–72.CrossRefGoogle Scholar
[186] Chan, C.C. and Tamir, C. (1985). Angular shift of a Gaussian beam reflected near the Brewster angle. Opt. Lett., 10, 378–80.Google Scholar
[187] Chiu, K.W. and Quinn, J.J. (1972). On the Goos–Hänchen effect: a simple example of a time delay scattering process. Am. J. Phys., 40, 1847–51.CrossRefGoogle Scholar
[188] Tureci, H.E. and Stone, A.D. (2002). Deviation from Snell's law for beams transmitted near the critical angle: application to microcavity lasers. Opt. Lett., 27, 7–9.CrossRefGoogle Scholar
[189] Schomerus, H. and Hentschel, M. (2006). Correcting ray optics at curved dielectric microresonator interfaces: phase-space unification of Fresnel filtering and the Goos–Hänchen shift. Phys. Rev. Lett., 96, 243903.Google Scholar
[190] Costa de Beauregard, O. (1965). Translational inertial spin effect with photons. Phys. Rev., 139, B1443–6.Google Scholar
[191] Boulware, D.G. (1973). Phase-shift analysis of the translation of totally reflected beams. Phys. Rev.D, 7, 2375–82.Google Scholar
[192] Ashby, N. and Miller, S.C. Jr. (1973). Shifts of light beams due to total internal reflection. Phys. Rev.D, 7, 2383–9.CrossRefGoogle Scholar
[193] Julia, B. and Neveu, A. (1973). On birefringence phenomena associated with total reflection. J. Phys. (Paris), 34, 335–40.CrossRefGoogle Scholar
[194] Ricard, J. (1974). Calcul du déplacement transversal par réflexion d'un faisceau lumineux limité latéralement. Nouv. Rev. Opt., 5, 7–24.Google Scholar
[195] Hugonin, J.P. and Petit, R. (1977). Étude générale des déplacements a la réflexion totale. J. Opt., 8, 73–87.Google Scholar
[196] Cowan, J.J. and Aničin, B. (1977). Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection. J. Opt. Soc. Am., 67, 1307–14.CrossRefGoogle Scholar
[197] Costa de Beauregard, O., Imbert, C., and Levy, Y. (1977). Observation of shifts in total reflection of a light beam by a multilayered structure. Phys. Rev.D, 15, 3553–62.CrossRefGoogle Scholar
[198] Turner, R.G. 1980. Shifts of coherent light beams on reflection at plane interfaces between isotropic media. Aust. J. Phys., 33, 319–35.Google Scholar
[199] Pun'ko, N.N. and Filippov, V.V. (1984). Beam splitting due to the finite size of the medium during total reflection. JETP Lett., 39, 20–3.Google Scholar
[200] Fedoseev, V.G. (1985). Lateral shift of a refracted light beam. Opt. Spectrosk., 58, 491–3.Google Scholar
[201] Fedoseev, V.G. (1991). Lateral displacement of light under reflection and refraction. 1. General results. Opt. Spectrosk., 71, 829–34.Google Scholar
[202] Fedoseev, V.G. (1991). Lateral displacement of light under reflection and refraction. 2. Displacement ratings. Opt. Spectrosk., 71, 992–7.Google Scholar
[203] Nasalski, W. (1996). Longitudinal and transverse effects on nonspecular reflection. J. Opt. Soc. Am.A, 13, 172–81.CrossRefGoogle Scholar
[204] Baida, F.I., Labeke, D.V., and Vigoureux, J.-M. (2000). Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection: near-field applications. J. Opt. Soc. Am.A, 17, 858–66.Google Scholar
[205] Pillon, F., Gilles, H., and Girard, S. (2004). Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection. Appl. Opt., 43, 1863–9.Google Scholar
[206] Pillon, F., Gilles, H., Girard, S., and Laroche, M. (2005). Goos–Hänchen and Imbert–Fedorov shifts for leaky guided modes. J. Opt. Soc. Am.B, 22, 1290–9.Google Scholar
[207] Pillon, F., Gilles, H., Girard, S., Laroche, M., and Emile, O. (2005). Transverse displacement at a total reflection near the grazing angle: a way to discriminate between theories. Appl. Phys.B, 80, 355–7.Google Scholar
[208] Qin, Y., Li, Y., He, H., and Gong, Q. (2009). Measurements of spin Hall effect of reflected light. Opt. Lett., 34, 2551–3.Google Scholar
[209] Ménard, J.-M., Mattacchione, A.E., Betz, M., and van Driel, H.M. (2009). Imaging the spin Hall effect of light inside semiconductors via absorption. Opt. Lett., 34, 2312–4.CrossRefGoogle Scholar
[210] Ménard, J.-M., Mattacchione, A.E., van Driel, H.M., Hautmann, C., and Betz, M., (2010). Ultrafast optical imaging of the spin Hall effect of light in semiconductors. Phys. Rev.B, 82, 045303.Google Scholar
[211] Onoda, M., Murakami, S., and Nagaosa, N. (2006). Geometrical aspects in optical wave-packet dynamics. Phys. Rev.E, 74, 066610.Google Scholar
[212] Liu, B.-Y. and Li, C.-F. (2008). The Imbert–Fedorov shift of paraxial light beams. Opt. Commun., 281, 3427–33.CrossRefGoogle Scholar
[213] Bliokh, K.Y. (2009). Comment on “The Imbert–Fedorov shift of a paraxial light beams.” Opt. Commun., 282, 1521–2.Google Scholar
[214] Fedoseyev, V.G. (2009). Conservation laws and angular transverse shifts of the reflected and transmitted light beams. Opt. Commun., 282, 1247–51.CrossRefGoogle Scholar
[215] Fedoseyev, V.G. (2008). Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface. J. Phys. A: Math. Theor., 41, 505202.Google Scholar
[216] Aiello, A. and Woerdman, J.P. (2011). Goos–Hänchen and Imbert–Fedorov shifts of a nondiffracting Bessel beam. Opt. Lett., 36, 543–5.CrossRefGoogle Scholar
[217] Okuda, H. and Sasada, H. (2006). Huge transverse deformation in nonspecular reflection of a light beam possessing orbital angular momentum near critical incidence. Opt. Express, 14, 8393–402.Google Scholar
[218] Okuda, H. and Sasada, H. (2008). Significant deformations and propagation variations of Laguerre–Gaussian beams reflected and transmitted at a dielectric interface. J. Opt. Soc. Am.A, 25, 881–90.Google Scholar
[219] Bliokh, K.Y. and Desyatnikov, A.S. (2009). Spin and orbital Hall effects for diffracting optical beams in gradient-index media. Phys. Rev.A, 79, 011807(R).Google Scholar
[220] Kravtsov, Y.A. and Orlov, Y.I. (1990). Geometrical Optics of Inhomogeneous Medium. Berlin: Springer-Verlag.
[221] Bliokh, K.Y. and Bliokh, Y.P. (2004). Modified geometrical optics of a smoothly inhomogeneous isotropic medium: The anisotropy, Berry phase, and the optical Magnus effect. Phys. Rev.E, 70, 026605.Google Scholar
[222] Bliokh, K.Y. and Freilikher, V.D. (2005). Topological spin transport of photons: magnetic monopole gauge field in Maxwell's equations and polarization splitting of rays in periodically inhomogeneous media. Phys. Rev.B, 72, 035108.Google Scholar
[223] Rytov, S.M. (1938). On transition from wave to geometrical optics. Dokl. Akad. Nauk. SSSR, 18, 263–7 (reprinted in [91]).Google Scholar
[224] Vladimirskii, V.V. (1941). The rotation of polarization plane for curved light ray. Dokl. Akad. Nauk. SSSR, 31, 222–6 (reprinted in [91]).Google Scholar
[225] Liberman, V.S. and Zel'dovich, B.Y. (1994). Birefringence by a smoothly inhomogeneous locally isotropic medium. Phys. Rev.E, 49, 2389–96.Google Scholar
[226] Savchenko, A.Y. and Zel'dovich, B.Y. (1994). Birefringence by a smoothly inhomogeneous locally isotropic medium: three-dimensional case. Phys. Rev.E, 50, 2287–92.Google Scholar
[227] Bliokh, K.Y. and Stepanovskii, Y.P. (2003). On the change in electromagnetic wave polarization in a smooth one-dimensionally inhomogeneous medium. J. Exp. Theor. Phys., 97, 479–84.CrossRefGoogle Scholar
[228] Duval, C., Horváth, Z., and Horváthy, P.A. (2007). Geometrical spinoptics and the optical Hall effect. J. Geom. Phys., 57, 925–41.CrossRefGoogle Scholar
[229] Gosselin, P., Bérard, A., and Mohrbach, H. (2007). Spin Hall effect of photons in a static gravitational field. Phys. Rev.D, 75, 084035.Google Scholar
[230] Berry, M.V. (1989). The quantum phase, five years after. In Geometric Phases in Phyics, ed. A., Shapere and F., Wilczek. Singapore: World Scientific.
[231] Nori, F. (2008). The dynamics of spinning light. Nature Photon., 2, 716–7.Google Scholar
[232] Allen, L., Courtial, J., and Padgett, M.J. (1999). Matrix formulation for the propagation of light beams with orbital and spin angular momenta. Phys. Rev.E, 60, 7497–503.Google Scholar
[233] Alexeyev, C.N. and Yavorsky, M.A. (2006). Topological phase evolving from the orbital angular momentum of ‘coiled’ quantum vortices. J. Opt. A: Pure Appl. Opt., 8, 752–8.Google Scholar
[234] Alexeyev, C.N. and Yavorsky, M.A. (2007). Berry's phase from optical vortices in coiled optical fibers. J. Opt. A: Pure Appl. Opt., 9, 6–14.Google Scholar
[235] Segev, M., Solomon, R., and Yariv, A. (1992). Manifestation of Berry's phase in image-bearing optical beams. Phys. Rev. Lett., 69, 590–3.CrossRefGoogle Scholar
[236] Kataevskaya, I.V. and Kundikova, N.D. (1995). Influence of the helical shape of a fiber waveguide on the propagation of light. Quantum Electron., 25, 927–8.Google Scholar
[237] Padgett, M.J. and Courtial, J. (1999). Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett., 24, 430–2.Google Scholar
[238] Papapetrou, A. (1951). Spinning test-particles in general relativity. Proc. R. Soc. LondonSer. A, 209, 248–58.Google Scholar
[239] Dixon, W.G. (1965). On a classical theory of charged particles with spin and the classical limit of the Dirac equation. Nuovo Cimento, 38, 1616–43.CrossRefGoogle Scholar
[240] Skagerstam, B.S. and Stern, A. (1981). Lagrangian descriptions of classical charged particles with spin. Physica Scripta, 24, 493–7.Google Scholar
[241] Bliokh, K.Y., Bliokh, Y.P., Savel'ev, S., and Nori, F. (2007). Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett., 99, 190404.Google Scholar
[242] Uchida, M. and Tonomura, A. (2010). Generation of electron beams carrying orbital angular momentum. Nature, 464, 737–9.Google Scholar
[243] Verbeeck, J., Tian, H., and Schattschneider, P. (2010). Production and application of electron vortex beams. Nature, 467, 301–4.Google Scholar
[244] McMorran, B.J., Agrawal, A., Anderson, I.M. et al. (2011). Electron vortex beams with high quanta of orbital angular momentum. Science, 331, 192–5.Google Scholar
[245] Bliokh, K.Y., Dennis, M.R., and Nori, F. (2011). Relativistic electron vortex beams: angular momentum and spin-orbit interaction. Phys. Rev. Lett., 107, 174802.Google Scholar
[246] Chuu, C.-P., Chang, M.-C., and Niu, Q. (2010). Semiclassical dynamics and transport of the Dirac spin. Soild State Commun., 150, 533–7.Google Scholar
[247] Bliokh, K.Y. and Nori, F. (2012) Relativistic Hall effect. Phys. Rev. Lett., 108, 120403.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×