Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2013
  • Online publication date: April 2011

Chapter 25 - Pharmacokinetics of inhaled anesthetics


1. Lockhart SH, Eger EI. Absence of abundant saturable binding sites for halothane or isoflurane in rabbit brain: inhaled anesthetics obey Henry's law. Anesth Analg 1990; 71: 70–2.
2. Epstein RM, Rackow H, Salinitre E, Wolf GL. Influence of the concentration effect on the uptake of anesthetic mixtures: the second gas effect. Anesthesiology 1964; 25: 364–371.
3. Sun XG, Su F, Shi YQ, Lee C. The “second gas effect” is not a valid concept. Anesth Analg 1999; 88: 188–92.
4. Hendrickx JF, Carette R, Lemmens HJ, De Wolf AM. Large volume N2O uptake alone does not explain the second gas effect of N2O on sevoflurane during constant inspired ventilation. Br J Anaesth 2006; 96: 391–5.
5. Eger EI. The effect of inspired concentration on the rate of rise of alveolar concentration. Anesthesiology 1963; 24: 153–7.
6. Eger EI. Respiratory and circulatory factors in the uptake of distribution of volatile anaesthetic agents. Br J Anaesth 1964; 36: 155–71.
7. Mapleson WW, Korman B. Concentration and second-gas effects in the water analogue. Br J Anaesth 1998; 81: 837–43.
8. Yasuda N, Lockhart SH, Eger EI, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991; 74: 489–98.
9. Laster MJ, Taheri S, Eger EI, et al. Visceral losses of desflurane, isoflurane, and halothane in swine. Anesth Analg 1991; 73: 209–12.
10. Stoelting RK, Eger EI. Percutaneous loss of nitrous oxide, cyclopropane, ether and halothane in man. Anesthesiology 1969; 30: 278–83.
11. Fassoulaki A, Lockhart SH, Freire BA, et al. Percutaneous loss of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991; 74: 479–83.
12. Bailey JM. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg 1997; 85: 681–6.
13. Cheney FW. An early example of evidence-based medicine: hypoxemia due to nitrous oxide. Anesthesiology 2007; 106: 186–8.
14. Rackow H, Salanitre E, Frumin MJ. Dilution of alveolar gases during nitrous oxide excretion in man. J Appl Physiol 1961; 16: 723–8.
15. Masuda T, Ikeda K. Elimination of nitrous oxide accelerates elimination of halothane: reversed second gas effect. Anesthesiology 1984; 60: 567–8.
16. Kety S. The theory and applications of inert gas exchange at the lungs and tissues. Pharmacological Reviews 1951; 3: 1–41.
17. Landon MJ, Matson AM, Royston BD, et al. Components of the inspiratory-arterial isoflurane partial pressure difference. Br J Anaesth 1993; 70: 605–11.
18. Lerou JG, Booij LH. Model-based administration of inhalation anaesthesia. 1. Developing a system model. Br J Anaesth 2001; 86: 12–28.
19. Mapleson WW. The rate of uptake of halothane vapour in man. Br J Anaesth 1962; 34: 11–18.
20. Fiserova-Bergerova V, Holaday DA. Uptake and clearance of inhalation anesthetics in man. Drug Metab Rev 1979; 9: 43–60.
21. Boxenbaum HG, Riegelman S, Elashoff RM. Statistical estimations in pharmacokinetics. J Pharmacokinet Biopharm 1974; 2: 123–48.
22. Allott PR, Steward A, Mapleson WW. Pharmacokinetics of halothane in the dog. Comparison of theory and measurement in individuals. Br J Anaesth 1976; 48: 279–95.
23. Levitt DG. Heterogeneity of human adipose blood flow. BMC Clin Pharmacol 2007; 7: 1.
24. Levitt DG. PKQuest: volatile solutes – application to enflurane, nitrous oxide, halothane, methoxyflurane and toluene pharmacokinetics. BMC Anesthesiol 2002; 2: 5.
25. Kharasch ED. Adverse drug reactions with halogenated anesthetics. Clin Pharmacol Ther 2008; 84: 158–62.
26. Amet Y, Berthou F, Fournier G, et al. Cytochrome P450 4A and 2E1 expression in human kidney microsomes. Biochem Pharmacol 1997; 53: 765–71.
27. Cahalan MK, Johnson BH, Eger EI, et al. A noninvasive in vivo method of assessing the kinetics of halothane metabolism in humans. Anesthesiology 1982; 57: 298–302.
28. Cascorbi HF, Vesell ES, Blake DA, Helrich M. Halothane biotransformation in man. Ann N Y Acad Sci 1971; 179: 244–8.
29. Eger EI, Koblin DD, Bowland T, et al. Nephrotoxicity of sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg 1997; 84: 160–8.
30. Ebert TJ, Frink EJ, Kharasch ED. Absence of biochemical evidence for renal and hepatic dysfunction after 8 hours of 1.25 minimum alveolar concentration sevoflurane anesthesia in volunteers. Anesthesiology 1998; 88: 601–10.
31. Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology 1995; 82: 689–99.
32. Spracklin DK, Thummel KE, Kharasch ED. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab Dispos 1996; 24: 976–83.
33. Kharasch ED, Hankins D, Mautz D, Thummel KE. Identification of the enzyme responsible for oxidative halothane metabolism: implications for prevention of halothane hepatitis. Lancet 1996; 347: 1367–71.
34. Anderson JS, Rose NR, Martin JL, Eger EI, Njoku DB. Desflurane hepatitis associated with hapten and autoantigen-specific IgG4 antibodies. Anesth Analg 2007; 104: 1452–3.
35. Kharasch ED, Karol MD, Lanni C, Sawchuk R. Clinical sevoflurane metabolism and disposition. I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology 1995; 82: 1369–78.
36. Mapleson WW. The theoretical ideal fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia 1998; 53: 264–72.
37. Lockwood GG, White DC. Effect of ventilation and cardiac output on the uptake of anaesthetic agents from different breathing systems: a theoretical study. Br J Anaesth 1991; 66: 519–26.
38. Eger EI, Ionescu P, Gong D. Circuit absorption of halothane, isoflurane, and sevoflurane. Anesth Analg 1998; 86: 1070–4.
39. Frei FJ, Zbinden AM, Thomson DA, Rieder HU. Is the end-tidal partial pressure of isoflurane a good predictor of its arterial partial pressure? Br J Anaesth 1991; 66: 331–9.
40. Eger EI, Bahlman SH. Is the end-tidal anesthetic partial pressure an accurate measure of the arterial anesthetic partial pressure? Anesthesiology 1971; 35: 301–3.
41. Lockwood GG, Sapsed-Byrne SM, Adams S. A comparison of anaesthetic tensions in arterial blood and oxygenator exhaust gas during cardiopulmonary bypass. Anaesthesia 1999; 54: 434–6.
42. Philipp A, Wiesenack C, Behr R, Schmid FX, Birnbaum DE. High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators. Perfusion 2002; 17: 175–8.
43. Saidman LJ, Eger EI. Change in cerebrospinal fluid pressure during pneumoencephalography under nitrous oxide anesthesia. Anesthesiology 1965; 26: 67–72.
44. Wolf GL, Capuano C, Hartung J. Nitrous oxide increases intraocular pressure after intravitreal sulfur hexafluoride injection. Anesthesiology 1983; 59: 547–8.
45. Kaur S, Cortiella J, Vacanti CA. Diffusion of nitrous oxide into the pleural cavity. Br J Anaesth 2001; 87: 894–6.
46. Eger EI, Saidman LJ. Hazards of nitrous oxide anesthesia in bowel obstruction and pneumothorax. Anesthesiology 1965; 26: 61–6.
47. Presson RG, Kirk KR, Haselby KA, Wagner WW. Effect of ventilation with soluble and diffusible gases on the size of air emboli. J Appl Physiol 1991; 70: 1068–74.
48. Munson ES, Merrick HC. Effect of nitrous oxide on venous air embolism. Anesthesiology 1966; 27: 783–7.
49. Benavides R, Maze M, Franks NP. Expansion of gas bubbles by nitrous oxide and xenon. Anesthesiology 2006; 104: 299–302.
50. Grocott HP, Sato Y, Homi HM, Smith BE. The influence of xenon, nitrous oxide and nitrogen on gas bubble expansion during cardiopulmonary bypass. Eur J Anaesthesiol 2005; 22: 353–8.
51. Lockwood G. Expansion of air bubbles in aqueous solutions of nitrous oxide or xenon. Br J Anaesth 2002; 89: 282–6.
52. Gallagher TM, Black GW. Uptake of volatile anaesthetics in children. Anaesthesia 1985; 40: 1073–7.
53. Dwyer RC, Fee JP, Howard PJ, Clarke RS. Arterial washin of halothane and isoflurane in young and elderly adult patients. Br J Anaesth 1991; 66: 572–9.
54. Strum DP, Eger EI, Unadkat JD, Johnson BH, Carpenter RL. Age affects the pharmacokinetics of inhaled anesthetics in humans. Anesth Analg 1991; 73: 310–18.
55. Salanitre E, Rackow H. The pulmonary exchange of nitrous oxide and halothane in infants and children. Anesthesiology 1969; 30: 388–94.
56. Dwyer R, Fee JP, Moore J. Uptake of halothane and isoflurane by mother and baby during caesarean section. Br J Anaesth 1995; 74: 379–83.
57. Karasawa F, Takita A, Fukuda I, Kawatani Y. Nitrous oxide concentrations in maternal and fetal blood during caesarean section. Eur J Anaesthesiol 2003; 20: 555–9.
58. Lerman J, Gregory GA, Willis MM, Eger EI. Age and solubility of volatile anesthetics in blood. Anesthesiology 1984; 61: 139–43.
59. Malviya S, Lerman J. The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology 1990; 72: 793–6.
60. Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 1989; 69: 370–3.
61. Dwyer R, Coppel DL. Intravenous injection of liquid halothane. Anesth Analg 1989; 69: 250–5.
62. Lucchinetti E, Schaub MC, Zaugg M. Emulsified intravenous versus evaporated inhaled isoflurane for heart protection: old wine in a new bottle or true innovation? Anesth Analg 2008; 106: 1346–9.
63. Yang XL, Ma HX, Yang ZB, et al. Comparison of minimum alveolar concentration between intravenous isoflurane lipid emulsion and inhaled isoflurane in dogs. Anesthesiology 2006; 104: 482–7.