Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: April 2011

Chapter 20 - Cardiac rhythm

References

1. Schwartz P, Zipes D. Autonomic modulation of cardiac arrhythmias. In: Zipes D, Jalife J, eds., Cardiac Electrophysiology: From Cells to Bedside, 3rd edn. Philadelphia, PA: Saunders, 2000: 300–14.
2. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 1994; 74: 1097–113.
3. Roden DM, Balser JR, George AL, Anderson ME. Cardiac ion channels. Annu Rev Physiol 2002; 64: 431–75.
4. Balser JR. Perioperative management of arrhythmias. In: Barash PG, Fleisher LA, Prough DS, eds., Problems in Anesthesia. Philadelphia, PA: Lippincott-Raven, 1998: 201.
5. Engelstein ED, Lippman N, Stein KM, Lerman BB. Mechanism-specific effects of adenosine on atrial tachycardia. Circulation 1994; 89: 2645–54.
6. Roden DM. Ibutilide and the treatment of atrial arrhythmias. A new drug – almost unheralded – is now available to US physicians. Circulation 1996; 94: 1499–502.
7. Mason JW. A comparison of seven antiarrhythmic drugs in patients with ventricular tachyarrhythmias. Electrophysiologic Study versus Electrocardiographic Monitoring Investigators. N Engl J Med 1993; 329: 452–8.
8. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991; 324: 781–8.
9. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392: 293–6.
10. Alings M, Wilde A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation 1999; 99: 666–73.
11. Baukrowitz T, Yellen G. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 1996; 271: 653–6.
12. Roden DM, Woosley RL, Primm RK. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am Heart J 1986; 111: 1088–93.
13. Priori SG, Barhanin J, Hauer RN, et al. Genetic and molecular basis of cardiac arrhythmias: impact on clinical management parts I and II. Circulation 1999; 99: 518–28.
14. Wit A. Triggered activity. In: Podrid P, Kowey P, eds., Cardiac Arrhythmia: Mechanisms, Diagnosis, and Management. Baltimore, MD: Williams & Wilkins, 1995: 70–7.
15. Reuter H. Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol 1974; 242: 429–51.
16. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P. Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 1999; 84: 713–21.
17. Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2000; 2: 173–7.
18. Wu Y, Roden DM, Anderson ME. Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res 1999; 84: 906–12.
19. Yeager M. Molecular biology and structure of cardiac gap junction intercellular channels. In: Zipes D, Jalife J, eds., Cardiac Electrophysiology: From Cells to Bedside, 3rd edn. Philadelphia, PA: Saunders, 2000: 31–40.
20. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981; 391: 85–100.
21. Noda M, Shimizu S, Tanabe T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984; 312: 121–7.
22. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952; 117: 500–44.
23. MacKinnon R, Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 1990; 250: 276–9.
24. Yellen G, Jurman ME, Abramson T, MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 1991; 251: 939–42.
25. Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992; 356: 441–3.
26. Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998; 280: 69–77.
27. Stuhmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989; 339: 597–603.
28. Armstrong CM, Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 1977; 70: 567–90.
29. Yang N, George AL, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 1996; 16: 113–22.
30. Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 1990; 250: 533–8.
31. Gellens ME, George AL, Chen LQ, et al. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A 1992; 89: 554–8.
32. Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994; 12: 1183–94.
33. Meadows LS, Isom LL. Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc Res 2005; 67: 448–58.
34. West JW, Patton DE, Scheuer T, et al. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 1992; 89: 10910–14.
35. Tang L, Kallen RG, Horn R. Role of an S4–S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker. J Gen Physiol 1996; 108: 89–104.
36. Balser JR. Structure and function of the cardiac sodium channels. Cardiovasc Res 1999; 42: 327–38.
37. Balser JR. The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol 2001; 33: 599–613.
38. Taouis M, Sheldon RS, Duff HJ. Upregulation of the rat cardiac sodium channel by in vivo treatment with a class I antiarrhythmic drug. J Clin Invest 1991; 88: 375–8.
39. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 1999; 84: 776–84.
40. Baba S, Dun W, Boyden PA. Can PKA activators rescue Na+ channel function in epicardial border zone cells that survive in the infarcted canine heart? Cardiovasc Res 2004; 64: 260–7.
41. Jespersen T, Gavillet B, van Bemmelen MX, et al. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun 2006; 348: 1455–62.
42. Wagner S, Dybkova N, Rasenack EC, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 2006; 116: 3127–38.
43. Deschenes I, Neyroud N, DiSilvestre D, et al. Isoform-specific modulation of voltage-gated Na+ channels by calmodulin. Circ Res 2002; 90: E49–57.
44. Tan HL, Kupershmidt S, Zhang R, et al. A calcium sensor in the sodium channel modulates cardiac excitability. Nature 2002; 415: 442–7.
45. Wingo TL, Shah VN, Anderson ME, et al. An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability. Nat Struct Mol Biol 2004; 11: 219–25.
46. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995; 80: 805–11.
47. Bennett PB, Yazawa K, Makita N, George AL. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376: 683–5.
48. Dumaine R, Wang Q, Keating MT, et al. Multiple mechanisms of Na+ channel–linked long-QT syndrome. Circ Res 1996; 78: 916–24.
49. Wang DW, Yazawa K, George AL, Bennett PB. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A 1996; 93: 13200–5.
50. Veldkamp MW, Viswanathan PC, Bezzina C, et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res 2000; 86: E91–7.
51. Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 1999; 23: 20–1.
52. Pu J, Boyden PA. Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res 1997; 81: 110–19.
53. Albert CM, Nam EG, Rimm EB, et al. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 2008; 117: 16–23.
54. Ellinor PT, Nam EG, Shea MA, et al. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm 2008; 5: 99–105.
55. Shang LL, Pfahnl AE, Sanyal S, et al. Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res 2007; 101: 1146–54.
56. Smits JP, Koopmann TT, Wilders R, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol 2005; 38: 969–81.
57. Wang DW, Desai RR, Crotti L, et al. Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 2007; 115: 368–76.
58. Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 2007; 116: 134–42.
59. Gavillet B, Rougier JS, Domenighetti AA, et al. Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ Res 2006; 99: 407–14.
60. Schultz D, Mikala G, Yatani A, et al. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart. Proc Natl Acad Sci U S A 1993; 90: 6228–32.
61. Perez-Reyes E, Cribbs LL, Daud A, et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 1998; 391: 896–900.
62. Perez-Reyes E, Castellano A, Kim HS, et al. Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem 1992; 267: 1792–7.
63. De Jongh KS, Warner C, Catterall WA. Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem 1990; 265: 14738–41.
64. Kim J, Ghosh S, Nunziato DA, Pitt GS. Identification of the components controlling inactivation of voltage-gated Ca2+ channels. Neuron 2004; 41: 745–54.
65. Hess P, Tsien RW. Mechanism of ion permeation through calcium channels. Nature 1984; 309: 453–6.
66. de Leon M, Wang Y, Jones L, et al. Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 1995; 270: 1502–6.
67. Hartzell HC, Mery PF, Fischmeister R, Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 1991; 351: 573–6.
68. Perets T, Blumenstein Y, Shistik E, Lotan I, Dascal N. A potential site of functional modulation by protein kinase A in the cardiac Ca2+ channel alpha 1C subunit. FEBS Lett 1996; 384: 189–92.
69. Gray PC, Scott JD, Catterall WA. Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Curr Opin Neurobiol 1998; 8: 330–4.
70. Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997; 81: 512–25.
71. Christ T, Boknik P, Wohrl S, et al. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 2004; 110: 2651–7.
72. Marban E, Robinson SW, Wier WG. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest 1986; 78: 1185–92.
73. Mazur A, Roden DM, Anderson ME. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes in rabbits. Circulation 1999; 100: 2437–42.
74. Po S, Snyders DJ, Baker R, Tamkun MM, Bennett PB. Functional expression of an inactivating potassium channel cloned from human heart. Circ Res 1992; 71: 732–6.
75. Dixon JE, McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 1994; 75: 252–60.
76. Nerbonne JM, Kass RS. Physiology and molecular biology of ion channels contributing to ventricular repolarization. In: Gussack I, Antzelevitch C, eds., Cardiac Repolarization. Totowa, NJ: Humana Press, 2003: 25–62.
77. Patel SP, Campbell DL. Transient outward potassium current, “Ito”, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 2005; 569: 7–39.
78. An WF, Bowlby MR, Betty M, et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 2000; 403: 553–6.
79. Po SS, Wu RC, Juang GJ, Kong W, Tomaselli GF. Mechanism of alpha-adrenergic regulation of expressed hKv4.3 currents. Am J Physiol Heart Circ Physiol 2001; 281: H2518–27.
80. van der Heyden MA, Wijnhoven TJ, Opthof T. Molecular aspects of adrenergic modulation of the transient outward current. Cardiovasc Res 2006; 71: 430–42.
81. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97: 175–87.
82. Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 1996; 379: 833–6.
83. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des 2006; 12: 2271–83.
84. Vizirianakis IS. Clinical translation of genotyping and haplotyping data: implementation of in vivo pharmacology experience leading drug prescription to pharmacotyping. Clin Pharmacokinet 2007; 46: 807–24.
85. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A 2000; 97: 10613–18.
86. Yang P, Wei J, Murray KT, et al. Frequency of ion channel mutations and polymorphisms in a large population of patients with drug-associated long QT syndrome. Pacing Clin Electrophysiol 2001; 24: 579.
87. Barhanin J, Lesage F, Guillemare E, et al. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 1996; 384: 78–80.
88. Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 1996; 384: 80–3.
89. Chen H, Kim LA, Rajan S, Xu S, Goldstein SA. Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex. Neuron 2003; 40: 15–23.
90. Tapper A, George AL. The KVLQT1 S6 transmembrane segment is a structural requirement for minK-mediated gating modulation. Biophys J 2001; 80: 192a.
91. Dilly KW, Kurokawa J, Terrenoire C, et al. Overexpression of beta2-adrenergic receptors cAMP-dependent protein kinase phosphorylates and modulates slow delayed rectifier potassium channels expressed in murine heart: evidence for receptor/channel co-localization. J Biol Chem 2004; 279: 40778–87.
92. Potet F, Scott JD, Mohammad-Panah R, Escande D, Baro I. AKAP proteins anchor cAMP-dependent protein kinase to KvLQT1/IsK channel complex. Am J Physiol Heart Circ Physiol 2001; 280: H2038–45.
93. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 1998; 98: 2314–22.
94. Kass RS, Moss AJ. Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest 2003; 112: 810–15.
95. Schwartz PJ. The long QT syndrome: a clinical counterpart of hERG mutations. Novartis Found Symp 2005; 266: 186–98.
96. Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause Jervell and Lange–Nielsen syndrome. Nat Genet 1997; 17: 267–8.
97. Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med 1997; 336: 1562–7.
98. Fedida D, Wible B, Wang Z, et al. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res 1993; 73: 210–16.
99. Snyders DJ, Tamkun MM, Bennett PB. Arapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 1993; 101: 513–43.
100. Ehrlich JR, Nattel S, Hohnloser SH. Novel anti-arrhythmic drugs for atrial fibrillation management. Curr Vasc Pharmacol 2007; 5: 185–95.
101. England SK, Uebele VN, Shear H, et al. Characterization of a voltage-gated K+ channel beta subunit expressed in human heart. Proc Natl Acad Sci U S A 1995; 92: 6309–13.
102. Wissmann R, Baukrowitz T, Kalbacher H, et al. NMR structure and functional characteristics of the hydrophilic N terminus of the potassium channel beta-subunit Kvbeta1.1. J Biol Chem 1999; 274: 35521–5.
103. Bahring R, Milligan CJ, Vardanyan V, et al. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvβ subunits. J Biol Chem 2001; 276: 22923–9.
104. Gong J, Xu J, Bezanilla M, et al. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 1999; 285: 1565–9.
105. Brendel J, Peukert S. Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Curr Med Chem Cardiovasc Hematol Agents 2003; 1: 273–87.
106. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 1997; 80: 772–81.
107. de Haan S, Greiser M, Harks E, et al. AVE0118, blocker of the transient outward current (Ito) and ultrarapid delayed rectifier current (IKur), fully restores atrial contractility after cardioversion of atrial fibrillation in the goat. Circulation 2006; 114: 1234–42.
108. Oros A, Volders PG, Beekman JD, van der Nagel T, Vos MA. Atrial-specific drug AVE0118 is free of torsades de pointes in anesthetized dogs with chronic complete atrioventricular block. Heart Rhythm 2006; 3: 1339–45.
109. Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 2002; 90: 939–50.
110. Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 1987; 325: 156–9.
111. Vandenberg CA. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci U S A 1987; 84: 2560–4.
112. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 1994; 266: 1068–72.
113. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 1994; 372: 366–9.
114. Wible BA, De Biasi M, Majumder K, Taglialatela M, Brown AM. Cloning and functional expression of an inwardly rectifying K+ channel from human atrium. Circ Res 1995; 76: 343–50.
115. Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E. Pharmacology of cardiac potassium channels. Cardiovasc Res 2004; 62: 9–33.
116. Miake J, Marban E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 2003; 111: 1529–36.
117. Krapivinsky G, Gordon EA, Wickman K, et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 1995; 374: 135–41.
118. Inagaki N, Gonoi T, Clement JP, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 1995; 270: 1166–70.
119. Gogelein H. Inhibition of cardiac ATP-dependent potassium channels by sulfonylurea drugs. Curr Opin Investig Drugs 2001; 2: 72–80.
120. Nabauer M, Kaab S. Potassium channel down-regulation in heart failure. Cardiovasc Res 1998; 37: 324–34.
121. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999; 42: 270–83.
122. Dobrev D, Graf E, Wettwer E, et al. Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 2001; 104: 2551–7.
123. Das M, Das DK. Molecular mechanism of preconditioning. IUBMB Life 2008; 60: 199–203.
124. Stadnicka A, Marinovic J, Ljubkovic M, Bienengraeber MW, Bosnjak ZJ. Volatile anesthetic-induced cardiac preconditioning. J Anesth 2007; 21: 212–19.
125. Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998; 31: 950–6.
126. Sato T, Sasaki N, Seharaseyon J, O'Rourke B, Marban E. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation 2000; 101: 2418–23.
127. DiFrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate. Drugs 2007; 67 (Suppl 2): 15–24.
128. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998; 393: 587–91.
129. Yu H, Chang F, Cohen IS. Pacemaker current exists in ventricular myocytes. Circ Res 1993; 72: 232–6.
130. Bucchi A, Barbuti A, Baruscotti M, DiFrancesco D. Heart rate reduction via selective ‘funny’ channel blockers. Curr Opin Pharmacol 2007; 7: 208–13.
131. Backx PH, Marban E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res 1993; 72: 890–900.
132. Yue DT, Marban E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch 1988; 413: 127–33.
133. Lesage F, Guillemare E, Fink M, et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 1996; 15: 1004–11.
134. Hume JR, Duan D, Collier ML, Yamazaki J, Horowitz B. Anion transport in heart. Physiol Rev 2000; 80: 31–81.
135. Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J 2000; 19: 6326–30.
136. Balser JR, George AL. Pharmacology of ion channels. In: Rose MR, Griggs RC, eds., Channelopathies of the Nervous System. Boston, MA: Butterworth-Heinemann, 2001: 23–48.
137. Armstrong CM. Ionic pores, gates, and gating currents. Q Rev Biophys 1975; 7: 179.
138. Choi KL, Mossman C, Aube J, Yellen G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 1993; 10: 533–41.
139. Strichartz GR. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 1973; 62: 37–57.
140. Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 1996; 93: 9270–5.
141. Hockerman GH, Johnson BD, Scheuer T, Catterall WA. Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels. J Biol Chem 1995; 270: 22119–22.
142. Schuster A, Lacinova L, Klugbauer N, et al. The IVS6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines. EMBO J 1996; 15: 2365–70.
143. Sunami A, Dudley SC, Fozzard HA. Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc Natl Acad Sci U S A 1997; 94: 14126–31.
144. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 1977; 69: 497–515.
145. Trimmer JS, Cooperman SS, Tomiko SA, et al. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 1989; 3: 33–49.
146. Balser JR, Nuss HB, Chiamvimonvat N, et al. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol 1996; 494: 431–42.
147. Chen Z, Ong BH, Kambouris NG, et al. Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels. J Physiol 2000; 524: 37–49.
148. Kambouris NG, Hastings LA, Stepanovic S, et al. Mechanistic link between lidocaine block and inactivation probed by outer pore mutations in the rat micro1 skeletal muscle sodium channel. J Physiol 1998; 512: 693–705.
149. Ong BH, Tomaselli GF, Balser JR. A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 2000; 116: 653–62.
150. Mitcheson JS, Chen J, Sanguinetti MC. Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J Gen Physiol 2000; 115: 229–40.
151. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 2000; 97: 12329–33.
152. Roepke TK, Abbott GW. Pharmacogenetics and cardiac ion channels. Vascul Pharmacol 2006; 44: 90–106.