Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T23:40:13.128Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 August 2017

Otto D. L. Strack
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions. Dover Publications, New York, 1965.
E. E., Allen. Note 169. MTAC, 8:240, 1954.Google Scholar
V. I., Aravin and S. N., Numerov. Theory of Fluid Flow in Undeformable Porous Media. Daniel Davey, New York, 1965.
W., Badon-Ghyben and J., Drabbe. Nota in verband met de voorgenomen put boring nabij Amsterdam. Tijdschr. Kon. Inst. Ing., pages 8–22, 1888–1889.
M., Bakker. Two exact solutions for a cylindrical inhomogeneity in a multi-aquifer system. Adv. Water Resour., 25:9–18, 2002.Google Scholar
M., Bakker. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities. Adv. Water Resour., 27:497–506, 2004.Google Scholar
K. W., Bandilla, I., Janković, and A. J., Rabideau. A new algorithm for analytic element modeling of large-scale groundwater flow. Adv. Water Resour., 30:446–454, 2007.Google Scholar
J., Bear and A., Verruijt. Modeling Groundwater Flow and Pollution. Reidel, Dordrecht, The Netherlands, 1987.
M. A., Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 5:339–404, 1941.Google Scholar
J., Boussinesq. Recherches théoriques sur l'écoulement des nappes d'eau infiltreés dans le sol. Journal de Math. Pures et Appl., 10:363–394, 1904.Google Scholar
C. W., Carlston. An early American statement of the Badon-Ghyben-Herzberg principle of static fresh-water-salt-water balance. Am Jour. Sci., 261(1):89–91, 1963.Google Scholar
H. S., Carslaw and J. C., Jaeger. Conduction of Heat in Solids, 2nd ed. Oxford University Press, London, 1959.
I. A., Charny. A rigorous derivation of Dupuit's formula for unconfined seepage with a seepage surface. Dokl. Akad. Nauk SSSR, 79:937–940, 1951.Google Scholar
H. H., Cooper and C. E., Jacob. A generalized graphical method for evaluating formation constants and summarizing well field history. Trans. Am. Geophys. Un., 27:526–534, 1946.Google Scholar
H., Darcy. Les Fountaines Publiques de la Ville de Dijon. Dalmont, Paris, 1856.
S. N., Davis and R. J. M., de Wiest. Hydrogeology. Wiley, New York, 1966.
C. S., Desai and J. F., Abel. Introduction to the Finite Element Method. Van Nostrand Reinholt, New York, 1972.
J., DuCommun. On the cause of fresh water springs, fountains and c. Am. Jour. Sci., 1st. ser. (44):174–176, 1828.Google Scholar
J., Dupuit. Études Théoriques et Pratiques sur le Mouvement des Eaux dans les Canaux Decouverts et à Travers les Terrains Perméables, 2nd ed. Dunod, Paris, 1863.
P., Forchheimer. Hydraulik. Teubner, B. G. Leipzig, 1914.
R. A., Freeze and J. A., Cherry. Groundwater. Prentice Hall, Englewood Cliffs, NJ, 1979.
N. K., Girinskii. Complex potential of flow with free surface in a stratum of relatively small thickness and k = f (z) (in Russian). Dokl. Akad. Nauk SSSR, 51(5):337–338, 1946a.Google Scholar
N. K., Girinskii. Complex potential of fresh groundwater flow in contact with brackish water (in Russian). Dokl. Akad. Nauk SSSR, 58(4):559–561, 1946b.Google Scholar
H. M., Haitjema. Modeling three-dimensional flow in confined aquifers using distributed singularities. PhD thesis, University of Minnesota, 1982.
H. M., Haitjema. Modeling three-dimensional flow in confined aquifers by superposition of both two- and three-dimensional analytic functions. Water Resour. Res., 21(10):1557–1566, 1985.Google Scholar
H. M., Haitjema. Modeling three-dimensional flow near a partially penetrating well in a stratified aquifer. In Proceedings of the NWWA Conference on Solving Groundwater Problems with Models, page 9, 1987.
H. M., Haitjema. Analytic Element Modeling of Groundwater Flow. Academic Press, San Diego, CA, 1995.
C., Hastings. Approximations for Digital Computers. Princeton University Press, Princeton, NJ, 1955.
H. R., Henry. Saltwater intrusion into fresh-water aquifers. J. Geophys. Res., 64(11), 1959.Google Scholar
A., Herzberg. Die Wasserversorgung einiger Nordseebaden. Z. Gasbeleucht. Wasserverzorg., 44:815–819, 824–844, 1901.Google Scholar
S., Irmay. Calcul du rabattement des nappes aquiferes. VIemes Journées de Hydraulique, 7 (Question I, Nancy, France), 1960.Google Scholar
C. E., Jacob. The flow of water in an elastic artesian aquifer. Trans. Am. Geophys. Un., 21: 574–586, 1940.Google Scholar
I., Javandel, C., Doughty, and C.-F., Tsang. Groundwater Transport: Handbook of Mathematical Models. American Geophysical Union, Washington, DC, 1984.
D., Kirkham. Explanation of paradoxes in Dupuit-Forchheimer seepage theory. Water Resour. Res., 3(2):609–622, 1967.Google Scholar
J. A., Liggett. Location of free surface in porous media. J. Hyd. Div. ASCE, HY4(102): 353–365, 1977.Google Scholar
S. W., Lohman. Ground-water hydraulics. U.S. Geol. Survey Professional Paper 708, 1972.Google Scholar
S., Mehl and M. C., Hill. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv. Water Resour., 25(5):497–511, 2001.Google Scholar
S.W., Mehl and M. C., Hill. Local grid refinement for MODFLOW-2000, the good, the bad, and the ugly. In Proceedings, MODFLOW and More 2003, Understanding through Modeling, pages 55–59, International Ground Water Modeling Center, School of Mines, Golden, CO, 2003.
S. W., Mehl and M. C., Hill. MODFLOW-2005, the U.S. Geological Survey Modular Ground-WaterModel – Documentation of Shared Node Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package. In Modeling Techniques, Section A, Ground Water, number 6 in Techniques and Methods 6-A12, chapter 12. U.S. Department of the Interior, 2005.
R. D., Miller. Circular area-sinks for infiltration and leakage. Master's thesis, University of Minnesota, 2001.
L. M., Milne-Thomson. Theoretical Aerodynamics, 4th ed. Dover Publications, New York, 1958.
L. M., Milne-Thomson. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model – Documentation of Shared Node Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package.
M., Muskat. The Flow of Homogeneous Fluids through Porous Media. McGraw-Hill, Ann Arbor, 1937.
P. Y., Polubarinova-Kochina. Theory of Groundwater Movement. Princeton University Press, Princeton, NJ, 1962.
O. D. L., Strack. A single potential solution for regional interface problems in coastal aquifers. Water Resour. Res., 12(6):1165–1174, 1976.Google Scholar
O. D. L., Strack. Three-dimensional streamlines in Dupuit-Forchheimer models. Water Resourc. Res., 20 (7):812–822, 1984.Google Scholar
O. D. L., Strack. The analytic element method for regional groundwater modeling. In Solving Groundwater Problems with Models, pages 929–941, Denver, CO, February 1987.
O. D. L., Strack. Groundwater Mechanics. Prentice-Hall, Englewood Cliffs, NJ, 1989.
O. D. L., Strack. Principles of the analytic element method. J. Hydrol., 226:128–138, 1999.Google Scholar
O. D. L., Strack. Theory and applications of the analytic element method. Reviews of Geophysics, 41(2): 1–16, 2003.Google Scholar
O. D. L., Strack. Comment on “Steady two-dimensional groundwater flow through many elliptical inhomogeneities” by Raghavendra Suribhatla, Mark Bakker, Karl Bandilla, and Igor Janković. Water Resour. Res., 41(W11601), 2005.Google Scholar
O. D. L., Strack. UsingWirtinger calculus and holomorphic matching to obtain the discharge potential for an elliptical pond. Water Resour. Res., 45(W01409), doi:10.1029WR00Y 128, 2009a.Google Scholar
O. D. L., Strack. The generating analytic element approach with application to the modified Helmholtz equation. J. Eng. Math., 64:163–191, March 2009b.Google Scholar
O. D. L., Strack. Vertically integrated flow in stratified aquifers. J. Hydrol., doi: http://dx.doi.org/10.1016/ j.jhydrol.2017.01.039, 2017. (in press).
O. D. L., Strack and B. K., Ausk. A formulation of groundwater flow in a stratified coastal aquifer using the Dupuit-Forchheimer approximation. Water Resour. Res., 51:1–20, 2015.Google Scholar
O. D. L., Strack and H. M., Haitjema. Modeling double aquifer flow using a comprehensive potential and distributed singularities: 1. Solution for homogeneous permeability. Water Resour. Res., 17(5):1535–1549, 1981.Google Scholar
O. D. L., Strack and T., Namazi. A new formulation for steady multiaquifer flow; an analytic element for piecewise constant infiltration. Water Resour. Res., 50(10):7939–7956, October 2014.Google Scholar
O. D. L., Strack, R. J., Barnes, and A., Verruijt. Vertically integrated flows and the Dupuit- Forchheimer approximation. Ground Water, 44(1):72–75, 2005.Google Scholar
R., Suribhadla, M., Bakker, K., Bandilla, and I., Janković. Steady two-dimensional groundwater flow through many elliptical inhomogeneities. Water Resour. Res., 40(W04202): 1–10, 2004.Google Scholar
C. V., Theis. The relation between lowering of the piezometric surface and the rate and duration of the discharge of a well using ground water storage. In Trans. Am. Geophys. Un., 16th meeting, volume 2, pages 519–524, 1935.Google Scholar
G., Thiem. Hydrologische Methoden. J. M. Gebhardt, Leipzig, Germany, 1906.
P., van der Veer. Calculation methods for two-dimensional groundwater flow. PhD thesis, Delft University of Technology, the Netherlands, 1978.
A., Verruijt. Theory of Groundwater Flow. Macmillan, London, 1970.
A., Verruijt. Theory of Groundwater Flow, 2nd. ed. Macmillan, London, 1982.
K., von Terzaghi. Theoretical Soil Mechanics. Chapman & Hall, London, 1943.
H., Wang and M. P., Anderson. Introduction to Groundwater Modeling. Freeman, San Francisco, 1982.
W., Wirtinger. Zur formalen Theorie der Funktionen von mehrenen komplexen Veranderlichen. Mathematischen Annalen, 97:357–375, 1927.Google Scholar
E. G., Youngs. Exact analysis of certain problems of ground-water flow with free surface conditions. J. Hydrol., 4:277–281, 1966.Google Scholar
E. G., Youngs. Seepage through unconfined aquifers with lower boundaries of any shape. Water Resour. Res., 7(3):624–631, 1971.Google Scholar
O. C., Zienkiewicz. The Finite Element Methods. McGraw-Hill, London, 1977.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Otto D. L. Strack, University of Minnesota
  • Book: Analytical Groundwater Mechanics
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781316563144.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Otto D. L. Strack, University of Minnesota
  • Book: Analytical Groundwater Mechanics
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781316563144.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Otto D. L. Strack, University of Minnesota
  • Book: Analytical Groundwater Mechanics
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781316563144.014
Available formats
×