Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T18:35:00.111Z Has data issue: false hasContentIssue false
Coming soon

8 - Mass loss from stars

Dina Prialnik
Affiliation:
Tel-Aviv University
Get access

Summary

Observational evidence of mass loss

It is an acknowledged fact that stars lose mass. In addition to the outflow of photons, there usually is an outflow of material particles. But unlike the flow of radiation, which is supplied by energy generation in the interior, the flow of mass is not replenished. As a result, the stellar mass decreases at a rate that is usually measured in solar masses per year and denoted by Ṁ, where the negative sign is omitted. Shedding of mass may take two forms: a sudden ejection of a mass shell, usually following an explosion, or a continuous flow, usually referred to as a wind. We shall deal with explosive mass ejection in Chapter 10, and devote the present discussion to stellar winds.

Indirect evidence for mass loss was brought in the previous chapter and theoretical indication for its probable occurrence was mentioned in Chapter 5. There is, however, direct observational evidence for continuous rapid expansion of the outer layers of stars beyond the stellar photosphere that marks the outer edge, and into the interstellar medium. The most common is exhibited by a characteristic shape of spectral lines, known as P-Cygni lines, named after the star P Cygni – one of the brightest in our Galaxy, discovered in 1600 as a new star (see upcoming Chapters 10 and 11) – where they are prominent. A P-Cygni line profile consists of a blue-shifted absorption component and a red-shifted emission component.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mass loss from stars
  • Dina Prialnik, Tel-Aviv University
  • Book: An Introduction to the Theory of Stellar Structure and Evolution
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801549.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mass loss from stars
  • Dina Prialnik, Tel-Aviv University
  • Book: An Introduction to the Theory of Stellar Structure and Evolution
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801549.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mass loss from stars
  • Dina Prialnik, Tel-Aviv University
  • Book: An Introduction to the Theory of Stellar Structure and Evolution
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801549.011
Available formats
×