Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-07T17:20:54.325Z Has data issue: false hasContentIssue false

7 - Intensity interferometry

Published online by Cambridge University Press:  23 February 2010

A. Labeyrie
Affiliation:
Observatoire de la Cote d'Azur
S. G. Lipson
Affiliation:
Technion - Israel Institute of Technology, Haifa
P. Nisenson
Affiliation:
Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
Get access

Summary

Introduction

The idea of using measurements of the correlation between temporal fluctuations in light intensity at different field points was proposed by R. Hanbury Brown as an alternative to interferometry for measuring the spatial coherence function and therefore obtaining stellar data with high resolution. He called it intensity interferometry. Basically, in terms which should by now be familiar to readers of this book, an extended body of angular diameter α, consisting of many incoherently emitting sources, produces a speckled wavefront at the observer in which the speckles have typical size λ/α and typical lifetime τc. A pair of observers separated by a distance considerably less than λ/α are in the same speckle and therefore see the same intensity fluctuations. Observers separated by larger distances are likely to be in different speckles and see fluctuations with lesser correlation. The method was originally used for radio astronomy, in order to overcome the problem of providing identical phase references at two receivers separated by a very long distance (Hanbury Brown et al. 1952). It was then noticed that the measured correlations were immune to severe fluctuations produced by ionospheric instabilities, since these were in a frequency range very different from those of the intensity fluctuations being correlated. This provided the incentive to extend the method to the optical region. One should remember that at that time, the Michelson stellar interferometer was the only interferometric instrument which had provided resolution exceeding the atmospherically limited seeing, having successfully measured the diameters of six stars, and Pease's attempts to extend the baseline from 6 to 15 meters had proved impractical because of problems of atmospheric turbulence and mechanical stability.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Intensity interferometry
  • A. Labeyrie, Observatoire de la Cote d'Azur, S. G. Lipson, Technion - Israel Institute of Technology, Haifa, P. Nisenson, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
  • Book: An Introduction to Optical Stellar Interferometry
  • Online publication: 23 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617638.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Intensity interferometry
  • A. Labeyrie, Observatoire de la Cote d'Azur, S. G. Lipson, Technion - Israel Institute of Technology, Haifa, P. Nisenson, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
  • Book: An Introduction to Optical Stellar Interferometry
  • Online publication: 23 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617638.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Intensity interferometry
  • A. Labeyrie, Observatoire de la Cote d'Azur, S. G. Lipson, Technion - Israel Institute of Technology, Haifa, P. Nisenson, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
  • Book: An Introduction to Optical Stellar Interferometry
  • Online publication: 23 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617638.009
Available formats
×