Skip to main content Accessibility help
×
  • Cited by 132
Publisher:
Cambridge University Press
Online publication date:
June 2012
Print publication year:
2007
Online ISBN:
9780511801198

Book description

This textbook provides an introduction to turbulent motion occurring naturally in the ocean on scales ranging from millimetres to hundreds of kilometres. It describes turbulence in the mixed boundary layers at the sea surface and seabed, turbulent motion in the density-stratified water between, and the energy sources that support and sustain ocean mixing. Little prior knowledge of physical oceanography is assumed. The text is supported by numerous figures, extensive further reading lists, and more than 50 exercises that are graded in difficulty. Detailed solutions to the exercises are available to instructors online at www.cambridge.org/9780521859486. This textbook is intended for undergraduate courses in physical oceanography, and all students interested in multidisciplinary aspects of how the ocean works, from the shoreline to the deep abyssal plains. It also forms a useful lead-in to the author's more advanced graduate textbook, The Turbulent Ocean (Cambridge University Press, 2005).

Reviews

'An Introduction to Ocean Turbulence by Steve Thorpe is the first book addressing the needs of instructors teaching introductory courses in ocean mixing. After initial explanations of turbulence fundamentals and techniques for measuring it in the ocean, the emphasis shifts to the processes producing the turbulence and how they in turn are generated and drive dissipation, diapycnal fluxes and dispersion. Copious illustrations from journal articles tie these discussions to current research and give students a clear path to reading current literature. By focusing on the energetics of ocean mixing, the final chapter puts the discussion into a global context. With this book, Professor Thorpe provides an invaluable aide to anyone teaching courses about ocean mixing to advanced undergraduates and graduate students, and I recommend it wholeheartedly.'

Professor Michael Gregg - University of Washington

'Mathematical complexity is avoided … Thus, young … students are allowed to absorb and understand essential ocean physics and the methods used to observe and measure turbulence in the oceans. Unlike other textbooks focusing on mathematical formulism and turbulence modelling, readership and usage of this introductory book shall be broad in marine science.'

Source: Environmental Earth Sciences

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Alford, M. ;H. and Gregg, M. ;C. 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16947–16 968. [137]
Alford, M. and Pinkel, R. 2000. Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr., 30, 805–832. [138]
Andreas, E. ;L., Claffey, K. ;J., Jordan, R. ;E.et al. 2006. Evaluations of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559, 117–149. [107]
Armi, L. and D'Asaro, E. 1980. Flow structures in the benthic ocean. J. Geophys. Res., 85, 469–484. [103, 106]
Armi, L. and Farmer, D. ;M. 1988. The flow of Mediterranean water through the Strait of Gibraltar, Prog. Oceanogr., 21, 1–105. [150]
Armi, L. and Millard, R. ;C. 1976. The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, 4983–4990. [222]
Armi, L., Hebert, D., Oakey, N.et al. 1989. Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354–370. [189]
Ashford, O. ;M. 1985. Prophet or Professor? The Life And Work of Lewis Fry Richardson. Bristol: Adam Hilger Ltd. [140]
Batchelor, G. ;K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press. [15]
Batchelor, G. 1996. The Life and Legacy of G. ;I. Taylor. Cambridge: Cambridge University Press. [51]
Bowden, K. ;F. and Fairbairn, L. ;A. 1956. Measurements of turbulent fluctuations and Reynolds stresses in a tidal current. Proc. Roy. Soc. Lond. A, 237, 422–438. [67, 69, 73]
Brown, G. ;L. and Roshko, A. 1974. On the density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775–816. [38]
Brügge, B. 1995. Near-surface mean circulation and kinetic energy in the central North Atlantic from drifter data. J. Geophys. Res., 100, 20543–20 554. [175]
Bryden, H. and Nurser, A. ;J. G 2003. Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 1870–1872. [220, 223]
Caldwell, D. ;R. and Chriss, T. ;M. 1979. The viscous boundary layer at the sea floor. Science, 205, 1131–1132. [114, 115]
Cardwell, D. ;S. L 1989. James Joule, a Biography. Manchester: Manchester University Press. [6]
Carter, G. ;S. and Gregg, M. ;C. 2002. Intense, variable mixing near the head of the Monterey submarine canyon. J. Phys. Oceanogr., 32, 3145–3165. [220]
Chriss, T. ;M. and Caldwell, D. ;R. 1982. Evidence for the influence of form drag on bottom boundary layer flow. J. Geophys. Res., 87, 4148–4154. [87, 106]
Csanady, G. ;T. 1973. Turbulent Diffusion in the Environment. Dordrecht: Reidel. [195]
D'Asaro, E. ;A. 2001. Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 3530–3537. [55]
D'Asaro, E. ;A. and Lien, R. ;C. 2000. Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr., 30, 641–655. [55]
Davis, R. ;E. 1987. Modelling eddy transport of passive tracers. J. Mar. Res., 45, 635–666. [190]
Davis, R. ;E. 1991a. Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 43–64. [190]
Davis, R. ;E. 1991b. Observing the general circulation with floats. Deep-Sea Res., 38, S531–S571. [190]
Davis, R. ;E., Szoeke, R., Halpern, D. and Niiler, P. 1981. Variability in the upper ocean during MILE. Part 1: the heat and momentum budgets. Deep-Sea Res., 28, 1427–1451. [127]
Drazin, P. ;G. and Reid, W. ;H. 1981. Hydrodynamic Stability. Cambridge: Cambridge University Press. [150]
Durst, F. and Ünsal, B. 2006. Forced laminar-to-turbulent transition of pipe flows. J. Fluid Mech., 560, 449–464. [32]
Eckart, C. 1948. An analysis of the stirring and mixing in incompressible fluids. J. Mar. Res., 7, 265–275. [13, 32]
Egbert, G. ;D. and Ray, R. ;D. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22475–22 502. [219]
Ellison, T. ;H. and Turner, J. ;S. 1959. Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423–448. [133]
Eriksen, C. ;C. 1978. Measurements and models of fine structure, internal gravity waves, and wave breaking in the deep ocean. J. Geophys. Res., 83, 2989–3009. [127]
Faller, A. ;J. and Auer, S. ;J. 1988. The role of Langmuir circulation in the dispersion of surface tracers. J. Phys. Oceanogr., 18, 1108–1123. [196]
Ferron, B., Mercier, H., Speer, K., Gargett, A. and Polzin, K. 1998. Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 1929–1945. [130, 220]
Fringer, O. ;B. and Street, R. ;L. 2003. The dynamics of breaking progressive interfacial waves. J. Fluid Mech., 494, 319–353. [126, 153]
Ganachaud, A. and Wunsch, C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data-transport. Nature, 408, 453–457. [141]
Gargett, A. ;E. 1999. Velcro measurements of turbulent kinetic energy dissipation rate, ε. J. Atmos. Oceanic Technol., 16, 1973–1993. [74]
Gargett, A. ;E., Osborn, T. ;R. and Naysmth, P. ;W. 1984. Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231–280. [75]
Gill, A. ;E. 1981. Homogeneous intrusions in a rotating stratified fluid. J. Fluid Mech., 103, 275–295. [32]
Gill, A. ;E. 1982. Atmosphere–Ocean Dynamics. London: Academic Press. [6, 21, 22, 32, 157]
Graf, G. 1989. Benthic–pelagic coupling in a deep-sea benthic community. Nature, 341, 439–441. [113]
Grant, H. ;L., Moilliet, A. and Vogel, W. ;M. 1968. Some observations of turbulence in and above the thermocline. J. Fluid Mech., 34, 443–448. [74, 117]
Grant, H. ;L., Stewart, R. ;W. and Moilliet, A. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241–268. [60, 61, 74]
Gregg, M. ;C. 1980. Microstructure patches in the thermocline. J. Phys. Oceanogr., 10, 915–943. [58]
Gregg, M. ;C. 1987. Diapycnal mixing in a thermocline: a review. J. Geophys. Res., 92, 5249–5286. [150]
Gregg, M. ;C. 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698. [152]
Gregg, M. ;C. 1999. Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanogr. Technol., 16, 1483–1490. [62, 74]
Gregg, M. ;C. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513–515. [153]
Gregg, M. ;C., Carter, G. ;S. and Kunze, E. 2005. Corrigendum. J. Phys. Oceanogr., 35, 1712–1715. [220]
Griffiths, R. ;W. and Linden, P. ;F. 1981. The stability of vortices in a rotating stratified fluid. J. Fluid Mech., 105, 283–316. [32]
Heathershaw, A. ;D. 1979. The turbulent structure of the bottom boundary layer in a tidal current. Geophys. J. Roy. Astron. Soc., 58, 395–430. [71]
Hickey, B. ;M. and T. ;C. Royer 2001. California and Alaska Currents. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 1. London: Academic Press, pp. 368–379. [177]
Hinze, J. ;O. 1959. Turbulence. New York: McGraw-Hill. [74]
Hogg, N., Biscaye, P., Gardner, W. and Schmitz, W. ;J. 1982. On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 (suppl), 231–263. [155]
Howard, L. ;N. 1961. Note on a paper by John W. Miles. J. Fluid Mech., 10, 509–512. [119, 150]
Huang, R. ;X. 1999. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746. [219]
Huppert, H. ;E. and Turner, J. ;S. 1981. Double-diffusive convection. J. Fluid Mech., 106, 299–329. [147]
Hunt, G. ;N. 1985. Radioactivity in Coastal and Surface Waters of the UK. Aquatic Environment Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft. [191]
Hunt, J. ;C. R, Pacheco, J. ;R., Mahalov, A. and Fernando, H. ;J. S 2005. Effects of rotation and sloping terrain on the fronts of density currents. J. Fluid Mech., 537, 285–315. [32]
Joule, J. ;P. 1850. On the mechanical equivalent of heat. Phil. Trans. Roy. Soc. Lond., 140 (1), 61–82 (also in Scientific Papers, published by Taylor and Francis for the Physical Society of London, 1884, pp. 298–328). [6, 32]
Karpen, V., Thomsen, L. and Suess, E. 2004. A new ‘schlieren’ technique application for fluid flow visualisation at cold seep sites. Mar. Geol., 204, 145–159. [74]
Kunze, E. 2001. Vortical modes. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3174–3178. [192]
Kunze, E., Williams, A. ;J. III and Schmitt, R. ;W. 1987. Optical microstructure in the thermohaline staircase east of Barbados. Deep-Sea Res., 34, 1697–1704. [74, 150]
Kunze, E., Briscoe, M. ;G. and Williams, A. ;J. III 1990. Interpreting shear and strain from a neutrally buoyant float. J. Geophys. Res., 95, 18111–18 125. [152]
Kunze, E., Firing, E., Hummon, J. ;M., Chereskin, T. ;K. and Thurnherr, A. ;M. 2006. Global abyssal mixing inferred from lowered acoustic Doppler current profiler shear and conductivity–temperature–depth probe strain profiles. J. Phys. Oceanogr., 36, 1553–1576. [152]
Lamarre, E. and Melville, W. ;K. 1994. Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95, 1317–1329. [33]
Langmuir, I. 1938. Surface motion of water induced by wind. Science, 87, 119–123. [95, 107]
Ledwell, J. ;R., Watson, A. ;J. and Laws, C. ;S. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res., 108, 21499–21 529. [143, 150, 183, 184, 189]
Lee, C. ;M., Kunze, E., Sanford, T. ;B.et al. 2006. Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1165–1183. [220]
Leibovich, S. 1983. The form and dynamics of Langmuir circulation. Annu. Rev. Fluid Dyn., 15, 391–427. [107]
Levitus, S., Antonov, J. and Boyer, D. 2005. The warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. [207]
Lien, R.-C. and Gregg, M. ;C. 2001. Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591. [136]
Lu, Y. and Lueck, R. ;G. 1999. Using broadband acoustic Doppler current profiler in a tidal channel. Part II: turbulence. J. Atmos. Oceanic Technol., 14, 1568–1579. [74]
Lumkin, R., Treguier, A.-M. and Speer, K. 2002. Lagrangian eddy scales in the North Atlantic Ocean. J. Phys. Oceanogr., 32, 2426–2 440. [190]
Lupton, J. ;E. 1995. Hydrothermal plumes: near and far field. In Seafloor Hydrothermal Systems. Physical, Chemical, Biological and Geological Interactions. Washington, DC: American Geophysical Union, pp. 317–346. [159]
McClean, J. ;L., Poulain, P.-M. and Pelton, J. ;W. 2002. Eulerian and Lagrangian statistics from surface drifters and high-resolution POP simulation in the North Atlantic. J. Geophys. Res., 22, 2472–2 491. [190]
MacKinnon, J. ;A. and Gregg, M. ;C. 2003. Mixing on the late-summer New England Shelf – solibores, shear and stratification. J. Phys. Oceanogr., 33, 1476–1492. [152]
, McWilliams J. ;C., Sullivan, P. ;P. and Moeng, C.-H. 1997. Langmuir turbulence in the ocean. J. Fluid Mech., 334, 31–58. [107]
Maxey, M. ;R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441–465. [192]
Melville, W. ;K. 1996. The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech., 28, 279–321. [109, 219]
Melville, W. ;K. and Matusov, P. 2002. Distribution of breaking waves at the ocean surface. Nature, 417, 58–63. [219]
Miles, J. 1961. On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508. [119, 150]
Miles, J. ;W. and Howard, L. ;N. 1964. Note on a heterogeneous shear layer. J. Fluid Mech., 20, 331–336. [120]
Morris, M. ;Y., Hall, M. ;M., Laurent, L. ;C. St. and Hogg, N. ;G. 2001. Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr., 31, 3331–3348. [155]
Morton, B. ;R., Taylor, G. ;I. and Turner, J. ;S. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. Lond. A, 234, 1–13. [83, 106, 110]
Moum, J. ;N. and W. ;D. Smyth 2001. Upper ocean mixing processes. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3093–3100. [107]
Moum, J. ;N., Gregg, M. ;C., Lien, R.-C. and Carr, M.-E. 1995. Comparison of turbulent kinetic energy dissipation rates from two microstructure profilers. J. Atmos. Oceanic Technol., 12, 346–366. [46, 64, 74]
Moum, J. ;M., Farmer, D. ;M., Smyth, W. ;D., Armi, L. and Vagle, S. 2003. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 2093–2112. [26]
Mowbray, D. ;E. and Rarity, B. ;S. H 1967. A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 1–16. [27]
, Munk W. 1966. Abyssal recipes. Deep-Sea Res., 13, 207–230. [140, 141, 150]
, Munk W. 1997. Once again: once again – tidal friction. Prog. Oceanogr., 40, 7–35. [219]
Munk, W. and Wunsch, C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1976–2009. [150, 219]
Smith, Nimmo W. ;A. M, Thorpe, S. ;A. and Graham, A. 1999. Surface effects of bottom-generated turbulence in a shallow sea. Nature, 400, 251–254. [12]
Smith, Nimmo W. ;A. M, Katz, J. and Osborn, T. ;R. 2005. On the structure of turbulence in the bottom boundary layer of the coastal ocean. J. Phys. Oceanogr., 35, 72–93. [44]
Nycander, J. 2005. Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110 (C10), C10028, doi:10.1029/2004JC002487. [219]
Oakey, N. ;S. 1982. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271. [74]
Oakey, N. ;S. 2001. Turbulence sensors. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3063–3069. [74]
Okubo, A. 1971. Oceanic diffusion diagrams. Deep-Sea Res., 18, 789–802. [181, 182, 189]
Ollitrault, M., Gabillet, C. and Verdière, A. ;C. 2005. Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381–407. [190]
Osborn, T. ;R. 1974. Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109–115. [62]
Osborn, T. ;R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89. [132]
Osborn, T. ;R. and Cox, C. ;S. 1972. Oceanic fine structure. Geophys. Fluid Dyn., 3, 321–345. [131]
Ozmidov, R. ;V. 1965. On the turbulent exchange in a stably stratified ocean. Izvestia Acad. Sci. U.S.S.R., Atmos. & Ocean Phys., 1, 861–871. [129, 182]
Park, P. ;K., Kester, D. ;R., Duedall, I. ;W. and Ketchum, B. ;H. 1983. Radioactive wastes and the ocean. In Wastes in the Ocean, ed. P. ;K. Park et al., vol. 3. New York: John Wiley and Sons, pp. 4–46. [192]
Pasquill, F. 1962. Atmospheric Diffusion. Toronto: D. van Nostrand Co. Ltd. [193]
Peters, H., Gregg, M. ;C. and Toole, J. ;M. 1988. On the parametrization of equatorial turbulence. J. Geophys. Res., 93, 1199–1218. [153]
Polzin, K. 1996. Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr., 26, 1409–1425. [128, 152]
Polzin, K., Speer, K. ;G., Toole, J. ;M. and Schmitt, R. ;W. 1996. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–56. [215]
Polzin, K. ;L., Toole, J. ;M., Ledwell, J. ;R. and Schmitt, R. ;W. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96. [150]
Proudman, J. 1953. Dynamical Oceanography. London: Methuen & Co. Ltd. [149]
Rapp, R. ;J. and Melville, W. ;K. 1990. Laboratory measurements of deep-water breaking waves. Phil. Trans. Roy. Soc. Lond. A, 331, 735–800. [32]
Ray, R. ;D. and Mitchem, G. ;T. 1997. Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162. [202]
Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. Lond. A, 174, 935–982 (also in Scientific Papers (1901), 2, 51–105). [3, 32]
Reynolds, O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. Lond. A, 186, 123–164 (also in Scientific Papers (1901), 2, 535–577). [39]
Reynolds, O. 1900. On the action of rain to calm the sea. In Papers on Mechanical and Physical Subjects, vol. 1. Cambridge: Cambridge University Press, pp. 86–88. [40]
Rhines, P. ;B. 1979. Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401–411. [192]
Richardson, L. ;F. and Stommel, H. 1948. Note on eddy diffusion in the sea. J. Meteorol., 5, 238–240. [189]
Richardson, P. ;L., Bowers, A. ;S. and Zenk, W. 2000. A census of Meddies tracked by floats. Prog. Oceanogr., 45, 209–250. [159]
Rossby, H. ;T., S. ;C. Riser and A. ;J. Mariano 1983. The western North Atlantic – a Lagrangian viewpoint. In Eddies in Marine Science, ed. Robinson, A. ;R.. Berlin: Springer-Verlag, pp. 66–91. [190]
Rossby, T. and Webb, D. 1970. Observing abyssal motions by tracking Swallow floats in the SOund Fixing And Ranging channel. Deep-Sea Res., 17, 359–365. [179, 190]
Rudnick, D. ;L., Boyd, T. ;J., Brainard, R. ;E.et al. 2003. From tides to mixing along the Hawaiian Ridge. Science, 301, 355–357. [219]
St. Laurent, L. and Schmitt, R. ;W. 1999. The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 1404–1424. [149]
St. Laurent, L. ;C., Toole, J. ;M. and Schmitt, R. ;W. 2001. Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 3476–3495. [144, 203]
Saunders, P. ;M. 1987. Flow through Discovery Gap. J. Phys. Oceanogr., 17, 631–643. [155]
Schmitt, R. ;W. 1981. Form of the temperature–salinity relationship in the Central Water: evidence of double-diffusive mixing. J. Phys. Oceanogr., 11, 1015–1026. [148]
Schmitt, R. ;W. 2001. Double-diffusive convection. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 2. London: Academic Press, pp. 757–766. [150]
Schmitt, R. ;W. and J. ;R. Ledwell 2001. Dispersion and diffusion in the deep ocean. In Encyclopedia of Ocean Sciences, ed. Steele, J. H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 2. London: Academic Press, pp. 726–733. [186]
Schott, F., Visbeck, M., Send, U.et al. 1996. Observations of deep convection in the Gulf of Lions, northern Mediterranean, during winter of 1991/2. J. Phys. Oceanogr., 26, 505–524. [107]
Sharples, J. and J. ;H. Simpson 2001. Shelf-sea and slope fronts. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 5. London: Academic Press, pp. 2760–2768. [109]
Shay, T. ;J. and Gregg, M. ;C. 1984a. Turbulence in an oceanic convective layer. Nature, 310, 282–285. [107]
Shay, T. ;J. and Gregg, M. ;C. 1984b. Turbulence in an oceanic convective layer – corrigendum. Nature, 311, 84. [92, 107]
Shay, T. ;J. and Gregg, M. ;C. 1986. Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 1777–1798. [93, 107]
Simpson, J. ;H. 1998. Tidal processes in shelf seas. In The Sea, vol. 10, ed. Brink, K. ;H. and Robinson, R.. New York: John Wiley and Sons, pp. 113–150. [109]
Simpson, J. ;H., Brown, J., Matthews, J. and Allen, G. 1990. Tidal straining, density currents and stirring in the control of estuarine stratification. Estuaries, 13, 125–132. [109]
Simpson, J. ;H., T. ;P. Rippeth and A. ;R. Campbell 2000. The phase lag of turbulent dissipation in tidal flow. In Interactions between Estuaries, Coastal Seas and Shelf Seas, ed. Yanagi, T.. Tokyo: Terr Scientific Publishing Co. (TERRAPUB), pp. 57–67. [109]
Smyth, W. ;D. and Moum, J. ;N. 2000. Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 1343–1362. [75, 124]
Smyth, W. ;D. and Winters, K. ;B. 2003. Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr., 33, 694–711. [151]
Smyth, W. ;D., Hebert, D. and Moum, J. ;N. 1996. Local ocean response to a multiphase westerly wind burst 2. Thermal and freshwater responses. J. Geophys. Res., 101 (C10), 22513–22 533. [94]
Smyth, W. ;D., Zavialov, P. ;O. and Moum, J. ;N. 1997. Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810–822. [112]
Sparrow, E. ;M., Husar, R. ;B. and Goldstein, R. ;J. 1970. Observations and other characteristics of thermals. J. Fluid Mech., 41, 793–800. [82]
Spelt, P. ;D. M and Biesheuvel, A. 1997. On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech., 336, 221–244. [192]
Staquet, C. and Sommeria, J. 2002. Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech., 34, 559–593. [150]
Stern, M. ;E. 1960. The ‘salt fountain’ and thermohaline convection. Tellus, 12, 172–175. [145]
Stephens, J. ;C. and Marshall, D. ;P. 2000. Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622–640. [213]
Stommel, H. 1949a. Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199–225. [189]
Stommel, H. 1949b. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8, 24–29. [173]
Stommel, H., Arons, A. ;B. and Blanchard, D. 1956. An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153. [145, 150]
Strang, E. ;J. and Fernando, H. ;J. S 2001. Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349–386. [150]
Sundermeyer, M. ;A. and LeLong, M. ;P. 2005. Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events. J. Phys. Oceanogr., 35, 2368–2386. [192]
Sundermeyer, M. ;A., Ledwell, J. ;R., Oakey, N. ;S. and Greenan, B. ;J. W 2005. Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 1245–1262. [36, 192]
Tait, R. ;I. and Howe, M. ;R. 1971. Thermohaline staircases. Nature, 231, 178–179. [150]
Taylor, G. ;I. 1919. Tidal friction in the Irish Sea. Phil. Trans. R. Soc. Lond. A, 220, 1–92. [33, 70, 73, 201, 219]
Taylor, G. ;I. 1931. Internal waves and turbulence in a flud of variable density. Rapp. et Proc.-Verb. des Réunions du Conseil Perm. Int. pour l'Expl. de la Mer, 76, 35–42 (also in Scientific Papers 1960, ed. Batchelor, G. ;K., vol. 2, pp. 240–246). [133, 149]
Taylor, G. ;I. 1959. The present position in the theory of turbulent diffusion. In Atmospheric Diffusion and Air Pollution, ed. Frenkiel, F. ;N. and Shephard, P. ;A.. London: Academic Press, pp. 101–112. [193]
Tennekes, H. and Lumley, J. ;L. 1982. A First Course in Turbulence, 2nd edn. Cambridge, MA: MIT Press. [74]
Thorpe, S. ;A. 1968. A method of producing a shear flow in a stratified fluid. J. Fluid Mech., 32, 693–704. [151]
Thorpe, S. ;A. 1971. Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech., 46, 299–319. [122]
Thorpe, S. ;A. 1985. Small-scale processes in the upper ocean boundary layer. Nature, 318, 5l9–522. [97, 101]
Thorpe, S. ;A. 1995. On the meandering and dispersion of a plume of floating particles caused by Langmuir circulation and a mean current. J. Phys. Oceanogr., 25, 685–690. [164, 195]
Thorpe, S. ;A. 2004. Langmuir circulation. Annu. Rev. Fluid Dyn., 36, 55–79. [107]
Thorpe, S. ;A. 2005. The Turbulent Ocean. Cambridge: Cambridge University Press (referred to as The Turbulent Ocean by S. A.Thorpe, Cambridge University Press, 2005). [i, ix, 6, 21, 33, 75, 109, 152, 192, 220]
Thorpe, S. ;A. and Hall, A. ;J. 1980. The mixing layer of Loch Ness. J. Fluid Mech., 101, 687–703. [100]
Thorpe, S. ;A., Osborn, T. ;R., Jackson, J. ;F. E, Hall, A. ;J. and Lueck, R. ;G. 2003. Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122–145. [66, 68]
Thurnherr, A. ;M., , L. ;C. Laurent St., Speer, K. ;G., Toole, J. ;M. and Ledwell, J. ;R. 2005. Mixing associated with sills in a canyon on the mid-ocean ridge flank. J. Phys. Oceanogr., 35, 1370–1381. [220]
Toggweiler, J. ;R. and R. ;M. Key 2001. Thermohaline circulation. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 2941–2947. [141]
Troy, C. ;D. and Koseff, J. ;R. 2005. The instability and breaking of long internal waves. J. Fluid Mech., 543, 107–136. [119]
Turner, J. ;S. 1973. Buoyancy Effects in Fluids. Cambridge: Cambridge University Press. [106, 149, 150]
Veron, F. and Melville, W. ;K. 2001. Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 25–65. [107, 108]
Wang, W. and Huang, R. ;X. 2004. Wind energy input to surface waves. J. Phys. Oceanogr., 34, 1276–1280. [219]
Welander, P. 1955. Studies of the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156. [14, 32]
Wesson, J. ;C. and Gregg, M. ;C. 1994. Mixing at the Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 9847–9878. [46, 53, 140, 150]
Wijesekera, H. and T. ;J. Boyd 2001. Upper ocean heat and freshwater budgets. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3079–3083. [96]
Williams, A. ;J. 1975. Images of ocean microstructure. Deep-Sea Res., 22, 811–829. [74]
Wimbush, M. 1970. Temperature gradient above the deep-sea floor. Nature, 227, 1041–1043. [106]
Wimbush, M. and Munk, W. 1971. The benthic boundary layer. In The Sea, ed. A. ;E. Maxwell, vol. 4(1). New York: John Wiley and Sons, pp. 731–758. [106]
Winkel, D. ;P., Gregg, M. ;C. and Sanford, T. ;B. 1996. Resolving oceanic shear and velocity with the Multi-Scale Profiler. J. Atmos. Oceanic Technol., 13, 1046–1072. [74]
Winkel, D. ;P., Gregg, M. ;C. and Sanford, T. ;H. 2002. Patterns of shear and turbulence across the Florida Current. J. Phys. Oceanogr., 32, 3269–3285. [46, 134]
Woods, J. ;D. 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791–800. [118, 149]
Wunsch, C. 2001. Inverse models. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 3. London: Academic Press, pp. 1368–1374. [220]
Wunsch, C. and Ferrari, R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281–314. [200, 218, 219, 220]
Yaglom, A. ;M. 1994. A. ;N. Kolmogorov as a fluid mechanician and founder of a school of turbulence research. Annu. Rev. Fluid Mech., 26, 1, 22. [48]
Zhurbas, V. and Oh, I. ;S. 2004. Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109 (C5), C05015, doi:10.1029/2003JC002241. [178, 190]

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.