Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T08:26:37.734Z Has data issue: false hasContentIssue false

14 - Methods for the study of behavioral neuroendocrinology

Published online by Cambridge University Press:  05 June 2015

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
Richard E. Brown
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Behavioral neuroendocrinology involves the study of the interactive effects of steroid and peptide hormones, neuropeptides, cytokines and neurotransmitters on behavior. Previous chapters have mentioned the role of hypothalamic nuclei in behavior (section 4.1), the behavioral effects of neurotransmitter agonists and antagonists (section 5.8.4), the neuroendocrine correlates of psychiatric disorders (section 6.8), the behavioral functions of steroid hormones (sections 9.9.3 and 9.9.4), the cognitive and behavioral effects of neuropeptides (section 12.7) and the effects of cytokines on the brain and behavior (section 13.5). The present chapter discusses behavioral methods used in the study of neuroendocrinology, the neural and genetic mechanisms mediating the effects of hormones on behavior, and some of the special problems involved in conducting behavioral neuroendocrinology research.

Neuroendocrine research utilizes several specific methods such as immunoradiometric assays for quantifying hormone levels (Chapter 8), immunohistochemistry (Chapter 9) and immuno fluorescence techniques for localizing hormones (Chapters 11 and 12). The study of behavioral neuroendocrinology relies on specific behavioral methodologies or behavioral bioassays. As discussed in Chapter 8 (section 8.1.3), a bioassay measures physiological changes in an animal or cell culture to determine the concentration or potency of a hormone in the circulation. Thus, for example, the size of a cock's comb is a bioassay for blood testosterone level and in rats the size and weight of the adrenal glands is a bioassay for the level of circulating ACTH or corticosterone. A behavioral bioassay measures behavioral changes to estimate the concentration or potency of a hormone.

Behavioral bioassays

A behavioral bioassay requires precise qualitative (verbal) descriptions of the behaviors of interest and accurate quantitative (mathematical) measures of the latency, frequency and duration of these behaviors. Thus, the measurement of behavior involves two stages: the observation and description of units of behavior and the quantitative measurement of these behavior units. Before these procedures can begin, however, one must determine which behaviors to record.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. (1986). “Methods in behavioral teratology” in Riley, E. P. and Vorhees, C. V. (eds.), Handbook of Behavioral Teratology (New York: Plenum Press), pp. 67–97.Google Scholar
Ader, R. (1976). “Conditioned adrenocortical steroid elevations in the rat,” J Comp Physiol Psychol 90, 1156–1163.CrossRefGoogle ScholarPubMed
Ader, R. (2003). “Conditioned immunomodulation; research needs and directions,” Brain Behav Immun 17(Suppl. 1), S51–S57.CrossRefGoogle ScholarPubMed
Adkins-Regan, E. (1981). “Early organizational effects of hormones: an evolutionary perspective” in Adler, N. T. (ed.), Neuroendocrinology of Reproduction: Physiology and Behavior (New York: Plenum Press), pp. 159–228.Google Scholar
Adler, N. T., Davis, P. G. and Komisaruk, B. R. (1977). “Variation in the size and sensitivity of a genital sensory field in relation to the estrous cycle in rats,” Horm Behav 9, 334–344.CrossRefGoogle ScholarPubMed
Al'Absi, M., Nakajima, M., Hooker, S., Wittmers, L. and Cragin, T. (2012). “Exposure to acute stress is associated with attenuated sweet taste,” Psychophysiol 49, 96–103.CrossRefGoogle ScholarPubMed
American Psychological Association. (1981). “Ethical principles of psychologists,” Amer Psychol 36, 633–638.
Amandusson, A. and Blomqvist, A. (2013). “Estrogenic influences in pain processing,” Front Neuroendocr 34, 329–349.CrossRefGoogle ScholarPubMed
Andelman, S. J., Else, J. G., Hearn, J. P. and Hodges, J. K. (1985). “The non-invasive monitoring of reproductive events in wild Vervet monkeys (Cercopithecus aethiops) using urinary pregnanediol-3a-glucuronide and its correlation with behavioural observations,” J Zool London (A) 205, 467–477.Google Scholar
Anestis, S. F. (2006). “Testosterone in juvenile and adolescent male chimpanzees (Pan troglodytes): effects of dominance rank, aggression and behavioral style,” Am J Phys Anthropol 130, 536–545.CrossRefGoogle ScholarPubMed
Argiolas, A. and Melis, M. R. (2004). “The role of oxytocin and the paraventricular nucleus in the sexual behavior of male mammals,” Physiol Behav 83, 309–317.CrossRefGoogle ScholarPubMed
Armario, A. and Jolin, T. (1989). “Influence of intensity and duration of exposure to various stressors on serum TSH and GH levels in adult male rats,” Life Sci 44, 215–221.CrossRefGoogle ScholarPubMed
Arnold, A. P. (1981). “Logical levels of steroid hormone action in the control of vertebrate behavior,” Amer Zool 21, 233–242.CrossRefGoogle Scholar
Arnold, A. P. and Jordan, C. L. (1988). “Hormonal organization of neural circuits,” Front Neuroendocr 10, 185–214.Google Scholar
Aronson, L. A. (1959). “Hormones and reproductive behavior: some phylogenetic considerations” in Gorbman, A. (ed.), Comparative Endocrinology (New York: John Wiley), pp. 98–120.Google Scholar
Austin, C. R. (1972). “The ethics of manipulating human reproduction” in Austin, C. R. and Short, R. V. (eds.), Reproduction in Mammals. 5. Artificial Control of Reproduction (Cambridge University Press), pp. 141–152.Google Scholar
Baggerman, B. (1968). “Hormonal control of reproductive and parental behaviour in fishes” in Barrington, E. J. W. and Jorgensen, C. B. (eds.), Perspectives in Endocrinology (London: Academic Press), pp. 351–404.Google Scholar
Balazs, R. (1976). “Hormones and brain development,” Prog Brain Res 45, 139–159.Google ScholarPubMed
Balazs, R., Patel, A. J. and Hajos, F. (1975). “Factors affecting the biochemical maturation of the brain: effects of hormones during early life,” Psychoneuroendocr 1, 25–36.CrossRefGoogle Scholar
Ball, G. F. and Balthazart, J. (2004). “Hormonal regulation of brain circuits mediating male sexual behavior in birds,” Physiol Behav 83, 329–346.CrossRefGoogle ScholarPubMed
Ball, G. F., Auger, C. J., Bernard, D. J., Charlier, T. D., Sartor, J. J., Riters, L. V.et al. (2004). “Seasonal plasticity in the song control system: multiple brain sites of steroid hormone action and the importance of variation in song behavior,” Ann NY Acad Sci 1016, 586–610.CrossRefGoogle ScholarPubMed
Balthazart, J. (1983). “Hormonal correlates of behavior” in Farner, D. S., King, J. R. and Parkes, K. C. (eds.), Avian Biology, vol. VII (New York: Academic Press), pp. 221–335.Google Scholar
Balthazart, J. (2011). “Minireview: hormones and human sexual orientation,” Endocr 152, 2937–2947.CrossRefGoogle ScholarPubMed
Balthazart, J. and Ball, G. F. (2007). “Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors,” Front Neuroendocr 28, 161–178.CrossRefGoogle ScholarPubMed
Balthazart, J. and Hendrick, J. (1976). “Annual variation in reproductive behavior, testosterone and plasma FSH levels in the Rouen duck, Anas platyrhynchos,” Gen Comp Endocrinol 28, 171–183.Google ScholarPubMed
Balthazart, J., Baillien, M., Cornil, C. A. and Ball, G. F. (2004). “Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action,” Physiol Behav 83, 247–270.CrossRefGoogle ScholarPubMed
Balthazart, J., Taziaux, M., Holloway, K., Ball, G. F. and Cornil, C. A. (2009). “Behavioral effects of brain-derived estrogens in birds,” Ann NY Acad Sci 1163, 31–48.CrossRefGoogle ScholarPubMed
Barber, B. (1976). “The ethics of experimentation with human subjects,” Sci Amer 234, 25–31.CrossRefGoogle ScholarPubMed
Bartke, A., Hafiez, A. A., Bex, F. J. and Dalterio, S. (1978). “Hormonal interactions in regulation of androgen secretion,” Biol Reprod 18, 44–54.CrossRefGoogle ScholarPubMed
Basterfield, L., Lumley, L. K. and Mathers, J. C. (2009). “Wheel running in female C57BL/6 J mice: impact of oestrus and dietary fat and effects on sleep and body mass,” Int J Obes 33, 212–218.CrossRefGoogle Scholar
Baumeister, A. A. and Sevin, J. A. (1990). “Pharmacologic control of aberrant behavior in the mentally retarded: toward a more rational approach,” Neurosci Biobehav Rev 14, 253–262.CrossRefGoogle Scholar
Beach, F. A. (1974). “Behavioral endocrinology and the study of reproduction,” Biol Reprod 10, 2–18.CrossRefGoogle Scholar
Beach, F. A. (1975). “Behavioral endocrinology: an emerging discipline,” Amer Sci 63, 178–187.Google Scholar
Beaulieu-Boire, G., Bourque, S., Chagnon, F., Chouinard, L., Gallo-Payet, N. and Lesur, O. (2013). “Music and biological stress dampening in mechanically-ventilated patients at the intensive care unit ward – a prospective interventional randomized crossover trial,” J Crit Care 28, 442–450.CrossRefGoogle Scholar
Berenbaum, S. A. and Beltz, A. M. (2011). “Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones,” Front Neuroendocr 32, 183–200.CrossRefGoogle ScholarPubMed
Bermant, G. and Davidson, J. M. (1974). Biological Bases of Sexual Behavior (New York: Harper & Row).Google Scholar
Bernal, J. (2005). “Thyroid hormones and brain development,” Vitam Horm 71, 95–122.Google ScholarPubMed
Bertram, E. H., Williamson, J. M., Cornett, J. F., Spradlin, S. and Chen, Z. F. (1997). “Design and construction of a long-term continuous video-EEG monitoring unit for simultaneous recording of multiple small animals,” Brain Res Protocols 2, 85–97.CrossRefGoogle ScholarPubMed
Brack, K. E., Jeffrey, S. M. T. and Lovick, T. A. (2006). “Cardiovascular and respiratory responses to a panicogenic agent in anaesthetised female Wistar rats at different stages of the oestrous cycle,” Europ J Neurosci 23, 3309–3318.CrossRefGoogle ScholarPubMed
Brain, P. and Benton, D. (1979). “The interpretation of physiological correlates of differential housing in laboratory rats,” Life Sci 24, 99–116.CrossRefGoogle ScholarPubMed
Brown, G. M. and Martin, J. B. (1974). “Corticosterone, prolactin, and growth hormone responses to handling and new environment in the rat,” Psychosom Med 36, 241–247.CrossRefGoogle ScholarPubMed
Brown, R. E. (1985a). “Hormones and paternal behavior in vertebrates,” Amer Zool 25, 895–910.CrossRefGoogle Scholar
Brown, R. E. (1985b). “The rodents I: effects of odours on reproductive physiology (primer effects)” in Brown, R. E. and Macdonald, D. W. (eds.), Social Odours in Mammals (Oxford: Clarendon Press), vol. 1, pp. 245–344.Google Scholar
Brown, R. E. and McFarland, D. J. (1979). “Interaction of hunger and sexual motivation in the male rat: a time-sharing approach,” Animal Behav 27, 887–896.CrossRefGoogle Scholar
Brown, R. E., Wilkinson, D. A., Imran, S. A., Caraty, A. and Wilkinson, M. (2012). “Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS),” Brain Res 1467, 1–9.CrossRefGoogle Scholar
Burke, A. W. and Broadhurst, P. L. (1966). “Behavioural correlates of the oestrous cycle in the rat,” Nature 209, 223–224.CrossRefGoogle ScholarPubMed
Campo-Engelstein, L. (2012). “Contraceptive justice: why we need a male pill,” Virtual Mentor 14, 146–151.Google Scholar
Cameron, O. G. and Nesse, R. M. (1988). “Systemic hormonal and physiological abnormalities in anxiety disorders,” Psychoneuroendocr 13, 287–307.CrossRefGoogle ScholarPubMed
Caras, M. L. (2013). “Estrogenic modulation of auditory processing: a vertebrate comparison,” Front Neuroendocr 34, 285–299.CrossRefGoogle ScholarPubMed
Carreon-Rodriguez, A. and Perez-Martinez, L. (2012). “Clinical implications of thyroid hormones effects on nervous system development,” Pediatr Endocr Rev 9, 644–649.Google ScholarPubMed
Ceva, E. and Moratti, S. (2013). “Whose self-determination? Barriers to access to emergency hormonal contraception in Italy,” Kennedy Inst Ethics 23, 139–167.Google ScholarPubMed
Cheng, M. F. (1986). “Individual behavioral response mediates endocrine changes induced by social interaction,” Ann New York Acad Sci 474, 4–12.CrossRefGoogle ScholarPubMed
Clarke, I. J. and Caraty, A. (2013). “Kisspeptin and seasonality of reproduction,” Adv Exp Med Biol 784, 411–430.Google ScholarPubMed
Cohen, J. (1983). “Hormones and brain mechanisms of vocal behavior in non-vocal learning birds” in Balthazart, J., Pröve, E. and Gilles, R. (eds.), Hormones and Behaviour in Higher Vertebrates (Berlin: Springer-Verlag), pp. 422–436.Google Scholar
Coover, G. D., Sutton, B. R. and Heybach, J. P. (1977). “Conditioning decreases in plasma corticosterone level in rats by pairing stimuli with daily feedings,” J Comp Physiol Psychol 91, 716–726.CrossRefGoogle Scholar
Crews, D. (1980). “Interrelationships among ecological, behavioral and neuroendocrine processes in the reproductive cycle of Anolis carolensis and other reptiles,” Adv Study Behav 11, 1–74.Google Scholar
Crews, D. (1986). “Comparative behavioral endocrinology,” Ann NY Acad Sci 474, 187–198.CrossRefGoogle ScholarPubMed
Crinnion, W. J. (2009). “Maternal levels of xenobiotics that affect fetal development and childhood health,” Alt Med Rev 14, 212–222.Google ScholarPubMed
Crowley, W. R. (1986). “Reproductive neuroendocrine regulation in the female rat by central catecholamine-neuropeptide interactions: a local control hypothesis,” Ann NY Acad Sci 474, 423–436.CrossRefGoogle Scholar
Cui, J. G., Tang, G. B., Wang, D. H. and Speakman, J. R. (2011). “Effects of leptin infusion during peak lactation on food intake, body composition, litter growth and maternal neuroendocrine status in female Brandt's voles (Lasiopodomys brandtii),” Am J Physiol Integ Comp Physiol 300, R447–R459.CrossRefGoogle Scholar
Culbert, K. M., Breedlove, S. M., Sisk, C. L., Burt, S. A. and Klump, K. L. (2013). “The emergence of sex differences in risk for disordered eating attitudes during puberty: a role for prenatal testosterone exposure,” J Ab Psychol 122, 420–432.CrossRefGoogle ScholarPubMed
Dabbs, J. M. (1991). “Salivary testosterone measurements: collecting, storing, and mailing saliva samples,” Physiol Behav 49, 815–817.CrossRefGoogle ScholarPubMed
Daskalakis, N. P., Lehrner, A. and Yehuda, R. (2013). “Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment,” Endocrinol Metab Clin North Am 42, 503–513.CrossRefGoogle ScholarPubMed
Davidson, J. M. and Trupin, S. (1975). “Neural mediation of steroid-induced sexual behavior in rats” in Sandler, M. and Gessa, G. L. (eds.), Sexual Behavior: Pharmacology and Biochemistry (New York: Raven Press), pp. 13–20.Google Scholar
Davis, E. S. and Marler, C. A. (2003). “The progesterone challenge: steroid hormone changes following a simulated territorial intrusion in femalePeromyscus californicus,”Horm Behav 44, 185–198.Google ScholarPubMed
Davis, K. W., Cepeda-Benito, A., Harraid, J. H. and Wellman, P. J. (2005). “Plasma corticosterone in the rat in response to nicotine and saline injections in a context previously paired or unpaired with nicotine,” Psychopharmacol 180, 466–472.CrossRefGoogle ScholarPubMed
Dawson, A., King, V. M., Bentley, G. E. and Ball, G. F. (2001). “Photoperiodic control of seasonality in birds,” J Biol Rhythms 16, 365–380.CrossRefGoogle ScholarPubMed
de Kloet, E. R., Joels, M. and Holsboer, F. (2005). “Stress and the brain: from adaptation to disease,” Nat Rev Neurosci 6, 463–475.CrossRefGoogle ScholarPubMed
De Kort, S. R. and ten Kate, C. (2004). “Repeated decrease in vocal repertoire size in Streptopelia doves,” Anim Behav 67, 549–557.CrossRefGoogle Scholar
Donat, P. (1991). “Measuring behaviour: the tools and the strategies,” Neurosci Biobehav Rev 15, 447–454.CrossRefGoogle ScholarPubMed
Edsall, G. (1969). “A positive approach to the problem of human experimentation,” Daedalus 98, 463–479.Google Scholar
Edwards, D. A. (1969). “Early androgen stimulation and aggressive behavior in male and female mice,” Physiol Behav 4, 333–338.CrossRefGoogle Scholar
Everitt, B. J. (1990). “Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats,” Neurosci Biobehav Rev 14, 217–232.CrossRefGoogle ScholarPubMed
Everett, J. W. (1989). Neurobiology of Reproduction in the Female Rat: A Fifty Year Perspective (Berlin: Springer-Verlag).CrossRefGoogle ScholarPubMed
Fantie, B. D., Brown, R. E. and Moger, W. H. (1984). “Constant lighting conditions affect sexual behaviour and hormone levels in adult male rats,” J Reprod Fert 72, 435–441.CrossRefGoogle ScholarPubMed
Feder, H. H., Storey, A., Goodwin, D., Reboulleau, C. and Silver, R. (1977). “Testosterone and 5α-dihydrotestosterone levels in peripheral plasma of male and female ring doves (Streptopelia risoria) during the reproductive cycle,” Biol Reprod 16, 666–677.CrossRefGoogle ScholarPubMed
Ferguson, K. T., Cassells, R. C., MacAllister, J. W. and Evans, G. W. (2013). “The physical environment and child development: an international review,” Int J Psychol 48, 437–468.CrossRefGoogle Scholar
Fillingim, R. B., King, C. D., Ribeiro-Dasilva, M. C., Rahim-Williams, B. and Riley, J. L. (2009). “Sex, gender, and pain: a review of recent clinical and experimental findings,” J Pain 10, 447–485.CrossRefGoogle ScholarPubMed
Flannelly, K. and Lore, R. (1977). “The influence of females upon aggression in domesticated male rats (Rattus norvegicus),Anim Behav 25, 654–659.CrossRefGoogle ScholarPubMed
Frederick, A. L. and Stanwood, G. D. (2009). “Drugs, biogenic amine targets and the developing brain,” Dev Neurosci 31, 7–22.CrossRefGoogle ScholarPubMed
Gagnidze, K., Weil, Z. M., Faustino, L. C., Schaafsma, S. M. and Pfaff, D. W. (2013). “Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration,” J Neuroendocr 25, 939–955.CrossRefGoogle ScholarPubMed
Gammill, L. S. and Bronner-Fraser, M. (2003). “Neural crest specification: migrating into genomics,” Nat Rev Neurosci 4, 795–805.CrossRefGoogle ScholarPubMed
Gandelman, R. (1983). “Gonadal hormones and sensory function,” Neurosci Biobehav Rev 7, 1–17.CrossRefGoogle ScholarPubMed
Gandelman, R. (1984). “Relative contributions of aggression and reproduction to behavioral endocrinology,” Aggress Behav 10, 123–133.3.0.CO;2-N>CrossRefGoogle Scholar
Gary, K. A., Sevarino, K. A., Yarbrough, G. G., Prange, A. J. and Winokur, A. (2003). “The thyrotropin releasing hormone (TRH) hypothesis of homeostatic regulation: implications for TRH-based therapeutics,” J Pharmacol Exp Therap 305, 410–416.CrossRefGoogle ScholarPubMed
Gelez, H., Archer, E., Chesneau, D., Campan, R. and Fabre-Nys, C. (2004). “Importance of learning in the response of ewes to male odor,” Chem Senses 29, 555–563.CrossRefGoogle ScholarPubMed
Gladue, B. A. and Clemens, L. G. (1980). “Flutamide inhibits testosterone-induced masculine sexual behavior in male and female rats,” Endocr 106, 1917–1922.CrossRefGoogle ScholarPubMed
Graham, J. M. and Desjardins, C. (1980). “Classical conditioning: induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity,” Science 210, 1039–1040.CrossRefGoogle ScholarPubMed
Guerry, J. D. and Hastings, P. D. (2011). “In search of HPA axis dysregulation in child and adolescent depression,” Clin Child Fam Psychol Rev 14, 135–160.CrossRefGoogle ScholarPubMed
Hachul, H., Bittencourt, L. R., Andersen, M. L., Haidar, M. A., Baracat, E. C. and Tufic, S. (2008). “Effects of hormone therapy with estrogen and/or progesterone on sleep patterns in postmenopausal women,” Int J Gynaecol Obstet 103, 207–212.CrossRefGoogle ScholarPubMed
Haley, D. W., Cordick, J., Mackrell, S., Antony, , , I. and Ryan-Harrison, M. (2011). “Infant anticipatory stress,” Biol Lett 23, 136–138.Google Scholar
Harding, C. F. (1981). “Social modulation of circulating hormone levels in the male,” Amer Zool 21, 223–231.CrossRefGoogle Scholar
Harding, S. M. and McGinnis, M. Y. (2004). “Androgen blockade in the MPOA or VMN: effects on male sociosexual behavior,” Physiol Behav 81, 671–680.CrossRefGoogle ScholarPubMed
Henkin, R. I. (1975). “Effects of ACTH, adrenocorticosteriods and thyroid hormone on sensory function” in Stumpf, W. E. and Grant, L. D. (eds.), Anatomical Neuroendocrinology (Basel: Karger), pp. 298–316.Google Scholar
Herlenius, E. and Lagercrantz, H. (2001). “Neurotransmitters and neuromodulators during early human development,” Early Hum Dev 65, 21–37.CrossRefGoogle ScholarPubMed
Herlenius, E. and Lagercrantz, H. (2004). “Development of neurotransmitter systems during critical periods,” Exp Neurol 190, S8–S21.CrossRefGoogle ScholarPubMed
Higashi, T. (2012). “Salivary hormone measurement using LC/MS/MS: specific and patient-friendly tool for assessment of endocrine function,” Biol Pharm Bull 35, 1401–1408.CrossRefGoogle ScholarPubMed
Hines, M. (2011). “Prenatal endocrine effects on sexual orientation and on sexually differentiated childhood behavior,” Front Neuroendocr 32, 170–182.CrossRefGoogle ScholarPubMed
Hinkelmann, K., Moritz, S., Botzenhardt, J., Riedesel, K., Wiedemann, K., Kellner, M.et al. (2009). “Cognitive impairment in major depression: association with salivary cortisol,” Biol Psych 66, 879–885.Google ScholarPubMed
Hoffman, J. R., Kraemer, W. J., Bhasin, S., Storer, T., Ratamess, N. A., Haff, G. G.et al. (2009). “Position stand on androgen and growth hormone use,” J Strength Cond Res 23(Suppl. 5), S1–S59.CrossRefGoogle ScholarPubMed
Hudson, J. I., Hiripi, E., Pope, H. G. and Kessler, R. C. (2007). “The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication,” Biol Psych 61, 348–358.Google ScholarPubMed
Hyde, J. S. and Sawyer, T. F. (1977). “Estrous cycle fluctuations in aggressiveness of house mice,” Horm Behav 9, 290–295.CrossRefGoogle ScholarPubMed
Ikemoto, S. and Wise, R. A. (2004). “Mapping of chemical trigger zones for reward,” Neuropharmacol 47, 190–201.CrossRefGoogle Scholar
Isaksson, I. M., Theodorsson, A., Theodorsson, E. and Strom, J. O. (2011). “Methods for 17β-oestradiol administration to rats,” Scand J Clin Lab Invest 71, 583–592.CrossRefGoogle ScholarPubMed
Jaffe, F. S. (1973). “Public policy on fertility control,” Sci Amer 229, 17–23.CrossRefGoogle ScholarPubMed
Jayasena, C. N., Nijher, G. M. K., Chaudhri, O. B., Murphy, K. G., Ranger, A., Lim, A.et al. (2009). “Subcutaneous injection of kisspeptin-54 stimulates gonadotrophin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis,” J Clin Endocr Metab 94, 4315–4323.CrossRefGoogle ScholarPubMed
Johansson, G., Collins, A. and Collins, V. P. (1983). “Male and female psychoneuroendocrine response to examination stress: a case report,” Motivat Emotion 7, 1–9.CrossRefGoogle Scholar
Johnson, , M. and Everett, B. (1988). Essential Reproduction, rd edn. (Oxford: Blackwell).Google Scholar
Johnston, R. E. (1981). “Attraction to odors in hamsters: an evaluation of methods,” J Comp Physiol Psychol 95, 951–960.CrossRefGoogle Scholar
Jones, S. L., Ismail, N., King, L. and Pfaus, J. G. (2012). “The effects of chronic administration of testosterone propionate with or without estradiol on the sexual behavior and plasma steroid levels of aged female rats,” Endocr 153, 5928–5939.CrossRefGoogle ScholarPubMed
Kawata, M. (2013). “Nurture: effects of intrauterine position on behaviour,” J Neuroendocr 25, 422–423.CrossRefGoogle ScholarPubMed
Kelley, A. E. (1989). “Behavioural models of neuropeptide action” in Fink, G. and Harmer, A. J. (eds.), Neuropeptides: A Methodology (Chichester: Wiley), pp. 301–331.Google Scholar
Kelley, A. E., Baldo, B. A. and Pratt, W. E. (2005). “A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal and food reward,” J Comp Neurol 493, 72–85.CrossRefGoogle ScholarPubMed
Kelley, B. M., Bandy, A.-L. E. and Middaugh, L. D. (1997). “A novel and detachable indwelling jugular catheterization procedure for mice,” Physiol Behav 62, 163–167.CrossRefGoogle ScholarPubMed
Knipper, M., Zinn, C., Maier, H., Praetorious, M., Rohbock, K., Köpschall, I.et al. (2000). “Thyroid hormone deficiency before the onset of hearing causes irreversible damage to peripheral and central auditory systems,” J Neurophysiol 83, 3101–3112.CrossRefGoogle ScholarPubMed
Koibuchi, N., Jingu, H., Iwasaki, T. and Chin, W. W. (2003). “Current perspectives on the role of thyroid hormone in growth and development of cerebellum,” Cerebellum 2, 279–289.CrossRefGoogle ScholarPubMed
Komisaruk, B. R., Adler, N. T. and Hutchison, , , J. (1972). “Genital sensory field: enlargement by estrogen treatment in female rats,” Science 178, 1295–1298.CrossRefGoogle ScholarPubMed
Komisaruk, B. R. and Steinman, J. L. (1986). “Genital stimulation as a trigger for neuroendocrine and behavioral control of reproduction,” Ann NY Acad Sci 474, 64–75.CrossRefGoogle ScholarPubMed
Krsiak, M. (1991). “Ethopharmacology: a historical perspective,” Neurosci Biobehav Rev 15, 439–445.CrossRefGoogle ScholarPubMed
La Torre, A., Conca, A., Duffy, D., Giupponi, G., Pompili, M. and Grozinger, M. (2013). “Sexual dysfunction related to psychotropic drugs: a critical review Part II: antipsychotics,” Pharmacopsych 46, 201–208.Google ScholarPubMed
Larson, M. R., Ader, R. and Moynihan, J. A. (2001). “Heart rate, neuroendocrine and immunological reactivity in response to an acute laboratory stressor,” Psychosom Med 63, 493–501.CrossRefGoogle Scholar
Lauder, J. M. (1983). “Hormonal and humoral influences on brain development,” Psychoneuroendocr 8, 121–155.CrossRefGoogle ScholarPubMed
Lauder, J. M. and Krebs, H. (1986). “Do neurotransmitters, neurohumors, and hormones specify critical periods?” in Greenough, W. T. and Juraska, J. M. (eds.), Developmental Neuropsychobiology (Orlando, FL: Academic Press), pp. 119–174.Google Scholar
Leatherwood, W. E. and Dragoo, J. L. (2013). “Effect of airline travel on performance: a review of the literature,” Br J Sports Med 47, 561–567.CrossRefGoogle ScholarPubMed
Lehner, P. N. (1979). Handbook of Ethological Methods (New York: Garland Press).Google Scholar
Lehrman, D. S. (1965). “Interaction between internal and external environments in the regulation of the reproductive cycle” in Beach, F. A. (ed.) Sex and Behavior (New York: Wiley), pp. 355–380.Google Scholar
Lehrman, D. S., Brody, P. N. and Wortis, R. P. (1961). “The presence of the mate and of nesting material as stimuli for the development of incubation behavior and for gonadotropin secretion in the ring dove (Streptopelia risoria),” Endocrinol 68, 507–516.CrossRefGoogle Scholar
Lenz, K. M. and McCarthy, M. M. (2010). “Organized for sex – steroid hormones and the developing hypothalamus,” Europ J Neurosci 32, 2096–2104.CrossRefGoogle ScholarPubMed
Leshner, A. I. (1978). An Introduction to Behavioral Endocrinology (New York: Oxford University Press).Google Scholar
Leshner, A. I. (1979). “Kinds of hormonal effects on behavior: a new view,” Neurosci Biobehav Rev 3, 69–73.CrossRefGoogle Scholar
Ludvig, N., Kovacs, L., Kando, L., Medveczky, G., Tang, H. M., Eberle, L. P.et al. (2002). “The use of a remote-controlled minivalve, carried by freely moving animals on their heads, to achieve instant pharmacological effects in intracerebral drug-perfusion studies,” Brain Res Protocols 9, 23–31.CrossRefGoogle ScholarPubMed
Mani, S. K. and Oyola, M. G. (2012). “Progesterone signaling mechanisms in brain and behavior,” Front Endocr 3, 1–8.CrossRefGoogle ScholarPubMed
Mantei, K. E., Ramakrishnan, S., Sharp, P. J. and Buntin, J. D. (2008). “Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves,” Horm Behav 54, 669–675.CrossRefGoogle ScholarPubMed
Marcondes, F. K., Bianchi, F. J. and Tanno, A. P. (2002). “Determination of the estrous cycle phases of rats: some helpful considerations,” Braz J Biol 62, 609–614.CrossRefGoogle ScholarPubMed
Martin, P. and Bateson, P. (1986). Measuring Behaviour (Cambridge University Press).Google Scholar
McWhinney, B. C., Briscoe, S. E., Ungerer, J. P. and Pretorius, C. J. (2010). “Measurement of cortisol, cortisone, prednisolone, dexamethasone and 11-deoxycortisol with ultra high performance liquid chromatography-tandem mass spectrometry: application for plasma, plasma ultrafiltrate, urine and saliva in a routine laboratory,” J Chromatogr B Analyt Technol Biomed Life Sci 878, 2863–2869.CrossRefGoogle Scholar
Mitchell, J. and Popkin, M. (1983). “The pathophysiology of sexual dysfunction associated with antipsychotic drug therapy in males: a review,” Arch Sexual Behav 12, 173–183.CrossRefGoogle Scholar
Mong, J. A. and Pfaff, D. W. (2004). “Hormonal symphony: steroid orchestration of gene modules for socio-sexual behaviors,” Mol Psych 9, 550–556.CrossRefGoogle Scholar
Mong, J. A., Baker, F. C., Mahoney, M. H., Paul, K. N., Schwartz, M. D., Semba, K.et al. (2011). “Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones,” J Neurosci 31, 16107–16116.CrossRefGoogle ScholarPubMed
Morales, A. (2011). “Androgens are fundamental in the maintenance of male sexual health,” Curr Urol Rep 12, 453–460.CrossRefGoogle ScholarPubMed
Morris, J. A., Jordan, C. L. and Breedlove, S. M. (2004). “Sexual differentiation of the vertebrate nervous system,” Nat Neurosci 7, 1034–1039.CrossRefGoogle ScholarPubMed
Moss, R. and McCann, S. (1973). “Induction of mating behavior in rats by luteinizing hormone releasing factor,” Science 181, 177–179.CrossRefGoogle ScholarPubMed
Mul, J. D., Spruijt, B. M., Brakkee, J. H. and Adan, R. A. H. (2013). “Melanocortin MC4 receptor-mediated feeding and grooming in rodents,” Europ J Pharmacol 719, 192–201.CrossRefGoogle ScholarPubMed
Nelson, A., Hartl, W., Jauch, K. W., Fricchione, G. L., Benson, H., Warshaw, A. L.et al. (2008). “The impact of music on hypermetabolism in critical illness,” Curr Opin Clin Nutr Metab Care 11, 790–794.CrossRefGoogle ScholarPubMed
Nixon, J. P., Kotz, C. M., Novak, C. M., Billington, C. J. and Teske, J. A. (2012). “Neuropeptides controlling energy balance: orexins and neuromedins,” Handbk Exp Pharmacol 209, 77–109.Google Scholar
Nugent, B. M., Tobet, S. A., Lara, H. E., Lucion, A. B., Wilsom, M. E., Recabarren, S. E.et al. (2012). “Hormonal programming across the lifespan,” Horm Metab Res 44, 577–586.Google ScholarPubMed
Nyby, J. G. (2008). “Reflexive testosterone release: a model system for studying the non-genomic effects of testosterone upon male behavior,” Front Neuroendocr 29, 199–210.CrossRefGoogle Scholar
Olausson, P., Kiraly, D. D., Gourley, S. L. and Taylor, J. R. (2013). “Persistent effects of prior exposure to corticosterone on reward-related learning and motivation in rodents,” Psychopharmacol 225, 569–577.CrossRefGoogle ScholarPubMed
Olivier, B., Chan, J. S., Snoeren, E. M., Olivier, J. D., Veening, J. G., Vinkers, C. H.et al. (2011). “Differences in sexual behavior in male and female rodents: role of serotonin,” Curr Top Behav Neurosci 8, 15–36.Google ScholarPubMed
Patisaul, H. B., Luskin, J. B. and Wilson, M. E. (2004). “A soy supplement and tamoxifen inhibit sexual behavior in female rats,” Horm Behav 45, 270–277.CrossRefGoogle ScholarPubMed
Pedersen, C. A., Caldwell, J. D., Johnson, M. F., Fort, S. A. and Prange, A. J. Jr. (1985). “Oxytocin antiserum delays onset of ovarian steroid-induced maternal behavior,” Neuropeptides 6, 175–182.CrossRefGoogle ScholarPubMed
Pereira, A. M., Tiemensma, J. and Romijn, J. A. (2010). “Neuropsychiatric disorders in Cushing's syndrome,” Neuroendocr 92(Suppl. 1), 65–70.CrossRefGoogle ScholarPubMed
Pfaff, D. W. (1989). “Features of a hormone-driven defined neural circuit for a mammalian behavior,” Ann NY Acad Sci 563, 131–147.CrossRefGoogle ScholarPubMed
Pfaff, D. W., Kow, L. M., Loose, M. D. and Flanagan-Cato, L. M. (2008). “Reverse engineering the lordosis behavior circuit,” Horm Behav 54, 347–354.CrossRefGoogle ScholarPubMed
Plutchik, R. (1962). The Emotions: Facts, Theories and a New Model (New York: Random House).Google Scholar
Raskin, K., de Gendt, K., Duittoz, A., Liere, P., Verhoeven, G., Tronche, F.et al. (2009). “Conditional inactivation of androgen receptor gene in the nervous system: effects on male behavioral and neuroendocrine responses,” J Neurosci 29, 4461–4470.CrossRefGoogle ScholarPubMed
Reinisch, J. M. and Gandelman, R. (1978). “Human research in behavioral endocrinology: methodological and theoretical considerations” in Dorner, G. and Kawakami, M. (eds.), Hormones and Brain Development (Amsterdam: Elsevier), pp. 77–86.Google Scholar
Rezaii, T., Hirschberg, A. L., Carlström, K. and Emberg, M. (2012). “The influence of menstrual phases on pain modulation in healthy women,” J Pain 13, 646–655.CrossRefGoogle ScholarPubMed
Richmond, E. and Rogol, A. D. (2010). “Current indications for growth hormone therapy for children and adolescents,” Endocr Dev 18, 92–108.Google ScholarPubMed
Rodriguez, M. A. and Garcia, R. (2013). “First, do no harm: the US sexually transmitted disease experiments in Guatemala,” Am J Public Health 103, 2122–2126.CrossRefGoogle ScholarPubMed
Roelfsema, F. and Veldhuis, J. D. (2013). “Thyrotropin secretion patterns in health and disease,” Endocr Revs 34, 619–657.CrossRefGoogle ScholarPubMed
Rohleder, N., Beulen, S. E., Chen, E., Wolf, J. M. and Kirschbaum, C. (2007). “Stress on the floor: the cortisol stress response to social-evaluative threat in competitive ballroom dancers,” Pers Soc Psychol Bull 33, 69–84.CrossRefGoogle ScholarPubMed
Rorie, R. W., Bilby, T. R. and Lester, T. D. (2002). “Application of electronic estrus detection technologies to reproductive management of cattle,” Theriogenol 57, 137–148.CrossRefGoogle ScholarPubMed
Rose, R. M., Bernstein, I. S. and Gordon, T. P. (1975). “Consequences of social conflict on plasma testosterone levels in rhesus monkeys,” Psychosom Med 37, 50–61.CrossRefGoogle ScholarPubMed
Rosenthal, R. (1966). Experimenter Effects in Behavioral Research (New York: Appleton-Century-Crofts).Google Scholar
Ruscio, M. G., Sweeny, T., Hazelton, J., Suppatkul, P. and Carter, C. S. (2007). “Social environment regulates corticotropin releasing factor, corticosterone and vasopressin in juvenile prairie voles,” Horm Behav 51, 54–61.CrossRefGoogle ScholarPubMed
Ruse, M. (1979). Sociobiology: Sense or Nonsense? (Boston, MA: D. Reidel).Google Scholar
Russell, M., Dark, K. A., Cummins, R. W., Ellman, G., Callaway, E. and Peeke, H. V. S. (1984). “Learned histamine release,” Science 225, 733–734.CrossRefGoogle ScholarPubMed
Rutstein, D. D. (1969). “The ethical design of human experiments,” Daedalus 98, 523–541.Google Scholar
Ryan, B. C. and Vandenbergh, J. G. (2002). “Intrauterine position effects,” Neurosci Biobehav Revs 26, 665–678.CrossRefGoogle ScholarPubMed
Sack, R. L. (2009). “The pathophysiology of jet lag,” Travel Med Infect Dis 7, 102–110.CrossRefGoogle ScholarPubMed
Samuels, M. H. and Bridges, R. S. (1983). “Plasma prolactin concentration in parental male and female rats: effects of exposure to rat young,” Endocr 113, 1647–1654.CrossRefGoogle Scholar
Sarvari, M., Kallo, I., Hrabovszky, E., Solymosi, N., Toth, K., Liko, I.et al. (2010). “Estradiol replacement alters gene expression of genes related to neurotransmission and immune surveillance in the frontal cortex of middle-aged ovariectomized rats,” Endocr 151, 3847–3862.CrossRefGoogle ScholarPubMed
Schiml, P. A. and Rissman, E. F. (2000). “Effects of gonadotropin-releasing hormones, corticotropin-releasing hormone, and vasopressin on female sexual behavior,” Horm Behav 37, 212–220.CrossRefGoogle ScholarPubMed
Schlinger, B. A. (1997). “Sex steroids and their actions on the birdsong system,” J Neurobiol 33, 619–631.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Schulz, K. M., Molenda-Figueira, H. A. and Sisk, C. L. (2009). “Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence,” Horm Behav 55, 597–604.CrossRefGoogle ScholarPubMed
Schwartz, M. D. and Mong, J. A. (2013). “Estradiol modulates recovery of REM sleep in a time-of-day-dependent manner,” Am J Physiol 305, R271–R280.Google Scholar
Schwartz, , , S. M. (1982). “Effects of constant bright illumination on reproductive processes in the female rat,” Neurosci Biobehav Rev 6, 391–406.CrossRefGoogle ScholarPubMed
Segraves, R. T. and Balon, R. (2014). “Antidepressant-induced sexual dysfunction in men,”Pharmacol Biochem Behav 121, 132–137.CrossRefGoogle Scholar
Sengelaub, D. R. and Forger, N. G. (2008). “The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences,” Horm Behav 53, 596–612.CrossRefGoogle ScholarPubMed
Serón-Ferré, M., Torres, C., Parraguez, V. H., Vergara, M., Valladares, L., Forcelledo, M. L.et al. (2002). “Perinatal neuroendocrine regulation. Development of the circadian time-keeping system,” Mol Cell Endocr 186, 169–173.CrossRefGoogle ScholarPubMed
Serón-Ferré, M., Forcelledo, M. L., Torres-Farfan, C., Valenzuela, F. J., Rojas, A., Vergara, M.et al. (2013). “Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms,” PLoS One 8, e57710.CrossRefGoogle ScholarPubMed
Shechter, A. and Boivin, D. B. (2010). “Sleep, hormones and circadian rhythms throughout the menstrual cycle in healthy women and women with premenstrual dysphoric disorder,” Int J Endocrinol 2010, 1–17.CrossRefGoogle ScholarPubMed
Shelley, D. N., Choleris, E., Kavaliers, M. and Pfaff, D. W. (2006). “Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal,” Soc Cog Affect Neurosci 1, 260–270.Google ScholarPubMed
Silverman, W. A. (1985). Human Experimentation: A Guided Step into the Unknown (Oxford University Press).Google Scholar
Simerly, R. B. (2002). “Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian brain,” Annu Rev Neurosci 25, 507–536.CrossRefGoogle Scholar
Simerly, R. B., Chang, C., Muramatsu, M. and Swanson, L. W. (1990). “Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study,” J Comp Neurol 294, 76–95.CrossRefGoogle Scholar
Soulairac, A. and Soulairac, M. L. (1978). “Relationships between the nervous and endocrine regulation of sexual behavior in male rats,” Psychoneuroendocr 3, 17–29.CrossRefGoogle ScholarPubMed
Spiteri, T., Musatov, S., Ogawa, S., Ribeiro, A., Pfaff, D. W. and Agmo, A. (2010). “Estrogen-induced sexual incentive motivation, proceptivity and receptivity depend on a functional estrogen receptor α in the ventromedial nucleus of the hypothalamus but not in the amygdala,” Neuroendocr 91, 142–154.CrossRefGoogle ScholarPubMed
Staley, K. and Scharfman, H. (2005). “A woman's prerogative,” Nat Neurosci 8, 697–699.CrossRefGoogle ScholarPubMed
Steyn, F. J., Huang, L., Ngo, S. T., Leong, J. W., Tan, H. Y., Xie, T. Y.et al. (2011). “Development of a method for the determination of pulsatile growth hormone secretion in mice,” Endocr 152, 3165–3171.CrossRefGoogle ScholarPubMed
Strom, J. O., Theodorsson, E. and Theodorsson, A. (2008). “Order of magnitude differences between methods for maintaining physiological 17β-oestradiol concentrations in ovariectomized rats,” Scand J Clin Lab Invest 68, 814–822.CrossRefGoogle ScholarPubMed
Sullivan, E. L., Shearin, J., Koegler, F. H. and Cameron, J. L. (2012). “Selective estrogen receptor modulator promotes weight loss in ovariectomized female rhesus monkeys (Macaca mulatta) by decreasing food intake and increasing activity,” Am J Physiol Endocr Metab 302, E759–E767.CrossRefGoogle ScholarPubMed
Swanson, H. H. (1974). “Sex differences in behaviour of the Mongolian gerbil (Meriones unguiculatus) in encounters between pairs of same or opposite sex,” Anim Behav 22, 638–644.CrossRefGoogle Scholar
Tapp, A. L., Maybery, M. T. and Whitehouse, A. J. O. (2011). “Evaluating the twin testosterone transfer hypothesis: a review of the empirical evidence,” Horm Behav 60, 713–722.CrossRefGoogle ScholarPubMed
Tay, C. C. K., Glasier, A. F. and McNeilly, A. S. (1996). “Twenty-four hour patterns of prolactin secretion during lactation and the relationship to suckling and the resumption of fertility in breast-feeding women,” Hum Reprod 11, 950–955.CrossRefGoogle ScholarPubMed
Terron, M. P., Delgado-Adamez, J., Pariente, J. A., Barriga, C., Paredes, S. D. and Rodriguez, A. B. (2013). “Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats,” Physiol Behav 118, 8–13.CrossRefGoogle ScholarPubMed
Teske, J. A., Billington, C. J. and Kotz, C. M. (2008). “Neuropeptidergic mediators of spontaneous physical activity and non-exercise thermogenesis,” Neuroendocr 87, 71–90.CrossRefGoogle ScholarPubMed
Tetel, M. J. and Pfaff, D. W. (2010). “Contributions of estrogen receptor-alpha and estrogen receptor-β to the regulation of behavior,” Biochim Biophys Acta 1800, 1084–1089.Google ScholarPubMed
Toran-Allerand, C. D. (1980). “Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro. II. Morphological correlates and hormonal specificity,” Brain Res 189, 413–427.CrossRefGoogle ScholarPubMed
Toran-Allerand, , , C. D. (1991). “Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation,” Psychoneuroendocr, 16, 7–24.CrossRefGoogle ScholarPubMed
Traub, R. J. and Yaping, J. (2013). “Sex differences and hormonal modulation of deep tissue pain,” Front Neuroendocr 34, 350–366.CrossRefGoogle ScholarPubMed
Tremere, L. A., Burrows, K., Jeong, J.-K. and Pinaud, R. (2011). “Organization of estrogen-associated circuits in the mouse primary auditory cortex,” J Exp Neurosci 2011, 45–60.Google ScholarPubMed
Tsutsui, K., Ukena, K., Sakamoto, H., Okuyama, S.-I. and Haraguchi, S. (2011). “Biosynthesis, mode of action, and functional significance of neurosteroids in the Purkinje cell,” Front Endocr 2, 1–9.CrossRefGoogle ScholarPubMed
Umscheid, C. A., Margolis, D. J. and Grossman, C. E. (2011). “Key concepts of clinical trials: a narrative review,” Postgrad Med 123, 194–204.CrossRefGoogle ScholarPubMed
Vigil, P., Orellana, R. F., Cortés, M. E., Molina, C. T., Switzer, B. E. and Klaus, H. (2011). “Endocrine modulation of the adolescent brain: a review,” J Ped Adolesc Gynecol 24, 330–337.Google ScholarPubMed
Viollet, C., Lepousez, G., Loudes, C., Videau, C., Simon, A. and Epelbaum, J. (2008). “Somatostatinergic systems in brain: networks and function,” Mol Cell Endocr 286, 75–87.CrossRefGoogle Scholar
Vom Saal, F. S. (1983). “The interaction of circulating oestrogens and androgens in regulating mammalian sexual differentiation” in Balthazart, J., Prove, E. and Gilles, R. (eds.), Hormones and Behaviour in Higher Vetebrates (Berlin: Springer-Verlag), pp. 159–177.Google Scholar
Vom Saal, , , F. S. and Bronson, F. H. (1980). “Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development,” Science 208, 597–599.CrossRefGoogle ScholarPubMed
Wade, J. and Arnold, A. P. (2004). “Sexual differentiation of the zebra finch song system,” Ann NY Acad Sci 1016, 540–559.CrossRefGoogle ScholarPubMed
Walburger, V., Pietrowsky, R., Kirschbaum, C. and Wolf, O. T. (2004). “Effects of the menstrual cycle on auditory event-related potentials,” Horm Behav 46, 600–606.Google Scholar
Wallen, K. and Hassett, J. M. (2009). “Sexual differentiation of behavior in monkeys: role of prenatal hormones,” J Neuroendocr 21, 421–426.CrossRefGoogle ScholarPubMed
Walker, E., Mittal, V. and Tessner, K. (2008). “Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia,” Ann Rev Clin Psychol 4, 189–216.CrossRefGoogle ScholarPubMed
Watanabe, K., Umezu, K. and Kurahashi, T. (2002). “Human olfactory contrast changes during the menstrual cycle,” Japan J Physiol 52, 353–359.CrossRefGoogle ScholarPubMed
Weiss, E. R., Maness, P. and Lauder, J. M. (1998). “Why do neurotransmitters behave like growth factors?”Perspect Dev Neurobiol 5, 323–335.Google Scholar
Whalen, R. E. (1986). “Hormonal control of behavior – a cautionary note,” Ann NY Acad Sci 474, 354–361.CrossRefGoogle ScholarPubMed
Wilcox, J. N. (1986). “Analysis of steroid action on gene expression in the brain,” Ann NY Acad Sci 474, 453–460.CrossRefGoogle Scholar
Wildt, L., Hausler, A., Marshall, G., Hutchison, J. S., Plant, T. M., Belchetz, P. E.et al. (1981). “Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the Rhesus monkey,” Endocr 109, 376–385.CrossRefGoogle ScholarPubMed
World Medical Association (2013). “World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects,” JAMA 310, 2191–2194.
Yahr, P. and Thiessen, D. D. (1972). “Steroid regulation of territorial scent marking in the Mongolian gerbil (Meriones unguiculatus),” Horm Behav 3, 359–368.CrossRefGoogle Scholar
Yanai, S., Semba, Y. and Endo, S. (2012). “Remarkable changes in behavior and physiology of laboratory mice after the massive 2011 Tohoku earthquake in Japan,”PLoS One 7, e44475.CrossRefGoogle Scholar
Zamaratskaia, G., Rydhmer, L., Andersson, H. K., Chen, G., Lowagie, S., Andersson, K.et al. (2008). “Long-term effect of vaccination against gonadotropin-releasing hormone, using Improvac, on hormonal profile and behavior of male pigs,” Anim Reprod Sci 108, 37–48.CrossRefGoogle ScholarPubMed
Zbinden, G. (1981). “Experimental methods in behavioral teratology,” ArchToxicol 48, 69–88.Google ScholarPubMed
Ziegler, T. E., Schultz-Darken, N. J., Scott, J. J., Snowdon, C. T. and Ferris, C. F. (2005). “Neuroendocrine response to female ovulatory odors depends upon social conditions in male common marmosets, Callithrix jacchus,”Horm Behav 47, 56–64.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×