Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T04:06:18.393Z Has data issue: false hasContentIssue false

8 - Biological roles of amino acids and peptides

Published online by Cambridge University Press:  05 June 2012

G. C. Barrett
Affiliation:
Oxford Brookes University
D. T. Elmore
Affiliation:
University of Oxford
Get access

Summary

Introduction

Amino acids fulfil three broad classes of function in biology. They serve as building blocks in prokaryotes and plant and animal eukaryotes for the synthesis of peptides and proteins. Most peptides derive from the processing of proteins, but some such as glutathione, folate and peptide antibiotics are biosynthesised by specific non-ribosomal routes (see Chapter 9). In contrast, particular amino acids, especially glycine, are required in the synthesis of a wide variety of small molecules, including alkaloids, purine and pyrimidine nucleotides, porphyrins, creatine and phospho-creatine. The second role of amino acids is to act as intermediates in incorporating or disposing of small molecules. For example, arginine is involved in various reaction sequences in the disposal of unwanted nitrogen as urea and the production of perhaps the most unexpected biomolecule, nitric oxide. Again, methionine makes its S-methyl group available for methylation reactions via the intermediate S-adenosylmethionine. Finally, some important biomolecules are derived by the metabolism of amino acids. Enzymic decarboxylation of some of the coded amino acids or of a hydroxylated derivative gives rise to important cellular messengers and hormones. Alternatively, an amino acid and an α-keto acid can undergo a trans-amination reaction and, since several a-keto acids are important metabolic intermediates, this reaction offers a simple route to some of the inessential amino acids. The amino group can also be removed oxidatively from an amino acid, giving rise to an α-keto acid. Some amino acids such as histidine and tryptophan undergo unique ring-opening reactions that lead, through rather complex pathways, to glu-tamic acid and alanine, respectively.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×