Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T02:28:01.592Z Has data issue: false hasContentIssue false

7 - Hormones and alternative reproductive tactics in vertebrates

Published online by Cambridge University Press:  10 August 2009

Rui F. Oliveira
Affiliation:
Unidade de Investigação em Eco-Etologia Instituto Superior de Psicologia Aplicada Rua Jardim do Tobaco 34 1149–Lisboa Portugal
Adelino V. M. Canario
Affiliation:
Centro de Ciências do Mar Universidade do Algarve Campus de Gambelas 800-117 Portugal
Albert F. H. Ros
Affiliation:
Unidade de Investigação em Eco-Etologia Instituto Superior de Psicologia Aplicada Rua Jardim do Tabaco 34 1149–041 Lisboa Portugal
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

The wide diversity of alternative tactics of reproduction found among vertebrates offers a unique opportunity to study the endocrine mechanisms underlying the phenotypic variation of reproductive traits. Here, we first assess the existing conceptual frameworks on the mechanisms underlying the expression of alternative reproductive tactics (ARTs) by reviewing the available data on hormone levels in alternative phenotypes and on the effects of hormone manipulations in different vertebrate taxa. We then highlight recent studies that have opened new avenues of research on the neuroendocrine basis of ARTs, such as the use of functional genomics to study differential gene expression between morphs. Finally, we stress the need to integrate the study of ARTs with the mechanisms underlying the expression of alternative phenotypes and with functional studies of ARTs. Only such an integrative approach will allow a comprehensive understanding of the evolution and development of ARTs.

INTRODUCTION

Setting the scene

According to the classic paradigm of the endocrine control of vertebrate reproduction, the hypothalamus–pituitary–gonadal (HPG) axis controls gonadal maturation, the expression of secondary sexual characters, and reproductive behavior (Figure 7.1A). However, in some species there are males in which gonadal maturation and sperm production are dissociated from the expression of behavioral and morphological male traits (i.e., secondary sexual characters). They are males with male alternative reproductive tactics (ARTs), and they offer unique opportunities to study the proximate mechanisms of reproduction (Figure 7.1B).

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 132 - 174
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. H. and Hearn, J. P. 1978. Physical, hormonal and behavioral aspects of sexual development in the marmoset monkey, Callithrix jacchus. Journal of Reproduction and Fertility 53, 155–166.CrossRefGoogle ScholarPubMed
Abbott, D. H., Keverne, E. B., Bercovitch, F. B., et al. 2003. Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Hormones and Behavior 43, 67–82.CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A. and Lois, C. 1995. Neuronal stem cells in the brain of adult vertebrates. Stem Cells 13, 263–272.CrossRefGoogle ScholarPubMed
Arnold, A. B. and Breedlove, S. M. 1985. Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Hormones and Behavior 19, 469–498.CrossRefGoogle ScholarPubMed
Arnold, W. and Dittami, J. 1997. Reproductive suppression in male alpine marmots. Animal Behaviour 53, 53–66.CrossRefGoogle Scholar
Aubin-Horth, N., Landry, C. R., Letcher, B. H., and Hofmann, H. 2005. Alternative life histories shape brain gene expression profiles in males of the same population. Proceedings of the Royal Society of London B 272, 1655–1662.CrossRefGoogle ScholarPubMed
Baker, J. V., Abbott, D. H., and Saltzman, W. 1999. Social determinants of reproductive failure in male common marmosets housed with their natal family. Animal Behaviour 58, 501–513.CrossRefGoogle ScholarPubMed
Barrett, G. M., Shimizu, K., Bardi, M., Asaba, S., and Mori, A. 2002. Endocrine correlates of rank, reproduction, and female-directed aggression in male Japanese macaques (Macaca fuscata). Hormones and Behavior 42, 85–96.CrossRefGoogle Scholar
Bartsch, S. S., Johnston, S. D., and Siniff, D. B. 1992. Territorial behaviour and breeding frequency of male Weddell seals (Leptinychotes weddelli) in relation to age, size, and concentration of serum testosterone and cortisol. Canadian Journal of Zoology 70, 680–692.CrossRefGoogle Scholar
Bass, A. H. and Grober, M. S. 2001. Social and neural modulation of sexual plasticity in teleost fish. Brain, Behavior and Evolution 57, 293–300.CrossRefGoogle ScholarPubMed
Bennett, N. C. and Faulkes, C. G. 2000. African Mole-Rats: Ecology and Eusociality. Cambridge, UK: Cambridge University Press.Google Scholar
Borg, B. 1994. Androgens in teleost fishes. Comparative Biochemistry and Physiology C 109, 219–245.Google Scholar
Bowen, B. S., Koford, R. R., and Brown, J. L. 1995. Genetic evidence for undetected alleles and unexpected parentage in the gray-breasted jay. Condor 97, 503–511.CrossRefGoogle Scholar
Brantley, R. K., Marchaterre, M. A., and Bass, A. H. 1993a. Androgen effects on vocal muscle structure in a teleost fish with inter- and intra-sexual dimorphisms. Journal of Morphology 216, 305–318.CrossRefGoogle Scholar
Brantley, R. K., Wingfield, J. C., and Bass, A. H. 1993b. Sex steroid levels in Porichthys notatus, a fish with alternative reproductive tactics, and a review of the hormonal bases for male dimorphism among teleost fishes. Hormones and Behavior 27, 332–347.CrossRefGoogle Scholar
Breedlove, S. M. and Arnold, A. P. 1981. Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Research 225, 297–307.CrossRefGoogle ScholarPubMed
Brockmann, H. J. 2001. The evolution of alternative strategies and tactics. Advances in the Study of Behavior 30, 1–51.CrossRefGoogle Scholar
Cardwell, J. R. and Liley, N. R. 1991. Hormonal control of sex and color change in the stoplight parrotfish, Sparisoma viride. General and Comparative Endocrinology 81, 7–20.CrossRefGoogle ScholarPubMed
Caro, T. M. and Bateson, P. 1986. Organization and ontogeny of alternative tactics. Animal Behaviour 34, 1483–1499.CrossRefGoogle Scholar
Cavigelli, S. A. and Pereira, M. E. 2000. Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Hormones and Behavior 37, 246–255.CrossRefGoogle Scholar
Chaudhuri, M. and Ginsberg, J. R. 1990. Urinary androgen concentrations and social status in two species of free ranging zebra (Equus burchelli and E. grevyi). Journal of Reproduction and Fertility 88, 127–133.CrossRefGoogle Scholar
Cheek, A. O., Thomas, P., and Sullivan, C. V. 2000. Sex steroids relative to alternative mating behaviors in the simultaneous hermaphrodite Serranus subligarius (Perciformes: Serranidae). Hormones and Behavior 37, 198–211.CrossRefGoogle Scholar
Cichoń, M., Dubiec, A., and Chadzińska, M. 2001. The effect of elevated reproductive effort on humoral immune function in collared flycatcher females. Acta Oecologica 22, 71–76.CrossRefGoogle Scholar
Clark, M. M. and Galef, B. C. Jr. 2000. Why some male Mongolian gerbils may help at the nest: testosterone, asexuality and alloparenting. Animal Behaviour 59, 801–806.CrossRefGoogle ScholarPubMed
Clark, M. M., Malenfant, S. A., Winter, D. A., and Galef, B. G. Jr. 1990. Fetal uterine position affects copulation and scent marking by adult gerbils. Physiology and Behavior 47, 301–305.CrossRefGoogle Scholar
Clark, M. M., Tucker, L., and Galef, B. G. Jr. 1992a. Stud males and dud males: intrauterine position effects on the success of male gerbils. Animal Behaviour 43, 215–221.CrossRefGoogle Scholar
Clark, M. M., vom Saal, F. S., and Galef, B. G. Jr. 1992b. Fetal intrauterine position correlates with endogenous testosterone levels in adult male Mongolian gerbils. Physiology and Behavior 51, 957–960.CrossRefGoogle Scholar
Clark, M. M., Vonk, J. M., and Galef, B. G. Jr. 1998. Intrauterine position, parenting and nest-site attachment in male Mongolian gerbils. Developmental Psychobiology 32, 177–181.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Clarke, F. M. and Faulkes, C. G. 1998. Hormonal and behavioural correlates of male dominance and reproductive status in captive colonies of the naked mole-rat, Heterocephalus glaber. Proceedings of the Royal Society of London B 47, 83–91.Google Scholar
Coltman, D. W., Bowen, W. D., and Wright, J. M. 1999. A multivariate analysis of phenotype and paternity in male harbor seals, Phoca vitulina, at Sable Island, Nova Scotia. Behavioral Ecology 10, 169–177.CrossRefGoogle Scholar
Conrad, K. F., Clarke, M. F., Robertson, R. J., and Boag, P. T. 1998. Paternity and the relatedness of helpers in the cooperatively breeding bell miner. Condor 100, 343–349.CrossRefGoogle Scholar
Creel, S. 2001. Social dominance and stress hormones. Trends in Ecology and Evolution 16, 491–497.CrossRefGoogle Scholar
Creel, S. 2005. Dominance, aggression, and glucocorticoid levels in social carnivores. Journal of Mammalogy 86, 255–264.CrossRefGoogle Scholar
Creel, S. and Creel, N. M. 2002. The African Wild Dog: Behavior, Ecology and Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Creel, S. and Waser, P. M. 1994. Inclusive fitness and reproductive strategies in dwarf mongooses. Behavioral Ecology 5, 339–348.CrossRefGoogle Scholar
Creel, S., Creel, N., Wildt, D., and Monfort, S. L. 1992. Behavioural and endocrine mechanisms of reproductive suppression in Serengeti dwarf mongooses. Animal Behaviour 43, 231–245.CrossRefGoogle Scholar
Creel, S., Creel, N., Mills, M., and Monfort, S. 1997. Rank and reproduction in cooperatively breeding African wild dogs: behavioral and endocrine correlates. Behavioral Ecology 8, 298–306.CrossRefGoogle Scholar
Crews, D. 1993. The organizational concept and vertebrates without sex chromosomes. Brain, Behavior and Evolution 42, 202–214.CrossRefGoogle ScholarPubMed
Crews, D. 1998. On the organization of individual differences in sexual behavior. American Zoologist 38, 118–132.CrossRefGoogle Scholar
Crews, D., Sakata, J., and Rhen, T. 1998. Developmental effects on intersexual and intrasexual variation in growth and reproduction in a lizard with temperature-dependent sex determination. Journal of Comparative Physiology C 119, 229–241.Google Scholar
Crommenacker, J., Richardson, D. S., Groothuis, T. G. G., et al. 2004. Testosterone, cuckoldry risk and extra-pair opportunities in the Seychelles warbler. Proceedings of the Royal Society of London B 271, 1023–1031.CrossRefGoogle ScholarPubMed
Damber, J. E. 1990. The effect of guanethidine treatment of testicular blood flow and testosterone production in rats. Experientia 46, 486–487.CrossRefGoogle ScholarPubMed
Dawson, J. W. and Mannan, W. 1991. Dominance hierarchies and helper contributions in Harris' hawks. Auk 108, 649–660.Google Scholar
Deerenberg, C., Apanius, V., Daan, S., and Bos, N. 1997. Reproductive effort decreases antibody responsiveness. Proceedings of the Royal Society of London B 264, 1021–1029.CrossRefGoogle Scholar
Kloet, E. R., Oitzl, M. S., and Joels, M. 1993. Functional implications of brain corticosteroid receptor diversity. Cellular and Molecular Neurobiology 13, 433–455.CrossRefGoogle ScholarPubMed
Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., and Joëls, M. 1998. Brain corticosteroid receptor balance in health and disease. Endocrine Reviews 19, 269–301.Google ScholarPubMed
Cruz, C., Solís, E., Valencia, J., Chastel, O., and Sorci, G. 2003. Testosterone and helping behavior in the azure-winged magpie (Cyanopica cyanus): natural covariation and an experimental test. Behavioral Ecology and Sociobiology 55, 103–111.CrossRefGoogle Scholar
Demski, L. 1987. Diversity in reproductive patterns and behavior in fishes. In Crews, D. (ed.) Psychobiology of Reproductive Behavior: An Evolutionary Perspective, pp. 1–27. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
DeNardo, D. F. and Sinervo, B. 1994a. Effects of corticosterone on activity and home-range size of free-ranging male lizards. Hormones and Behavior 28, 53–65.CrossRefGoogle Scholar
DeNardo, D. F. and Sinervo, B. 1994b. Effects of steroid hormone interactions on activity and home-range size of male lizards. Hormones and Behavior 28, 273–287.CrossRefGoogle Scholar
Devlin, R. H. and Nagahama, Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.CrossRefGoogle Scholar
Dierkes, P., Taborsky, M., and Kohler, U. 1999. Reproductive parasitism of broodcare helpers in a cooperatively breeding fish. Behavioral Ecology 10, 510–515.CrossRefGoogle Scholar
Digby, L. J. 1999. Sexual behavior and extragroup copulations in a wild population of common marmosets (Callithrix jacchus). Folia Primatologica 70, 136–145.CrossRefGoogle Scholar
Dixon, A. F. 1998. Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Humans. Oxford, UK: Oxford University Press.Google Scholar
Duckworth, R. A., Mendonça, M. T., and Hill, G. E. 2004. Condition-dependent sexual traits and social dominance in the house finch. Behavioral Ecology 15, 779–784.CrossRefGoogle Scholar
Dufty, A. M. Jr. and Wingfield, J. C. 1986. The influence of social cues on the reproductive endocrinology of male brown-headed cowbirds: field and laboratory studies. Hormones and Behavior 20, 222–234.CrossRefGoogle ScholarPubMed
Emerson, S. B. 2001. Male advertisement calls: behavioral variation and physiological processes. In Ryan, M. J. (ed.) Anuran Communication, pp. 36–44. Washington, DC: Smithsonian Institution Press.Google Scholar
Emerson, S. B. and Hess, D. I. 2001. Glucocorticoids, androgens, testis mass, and the energetics of vocalizations in breeding male frogs. Hormones and Behavior 39, 59–69.CrossRefGoogle Scholar
Faulkes, C. G. and Abbott, D. H. 1997. Proximate mechanisms regulating a reproductive dictatorship: a single dominant female controls male and female reproduction in colonies of naked mole-rats. In Solomon, N. G. and French, J. A. (eds.) Cooperative Breeding in Mammals, pp. 302–334. Cambridge, UK: Cambridge University Press.Google Scholar
Faulkes, C. G. and Bennett, N. C. 2001. Family values: group dynamics and social control of reproduction in African mole-rats. Trends in Ecology and Evolution 16, 184–190.CrossRefGoogle ScholarPubMed
Fleming, I. A. 1998. Pattern and variability in the breeding system of Atlantic salmon, with comparisons to other salmonids. Canadian Journal of Fisheries and Aquatic Sciences 55, 59–76.CrossRefGoogle Scholar
Flores, D., Tousignant, A., and Crews, D. 1994. Incubation temperature affects the behavior of adult leopard geckos (Eublepharis macularius). Physiology and Behavior 55, 1067–1072.CrossRefGoogle Scholar
Folstad, I. and Karter, A. J. 1992. Parasites, bright males, and the immunocompetence handicap. American Naturalist 139, 603–622.CrossRefGoogle Scholar
Foran, C. M. and Bass, A. H. 1999. Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. General and Comparative Endocrinology 116, 141–152.CrossRefGoogle ScholarPubMed
Forger, N. G., Fishman, R. B., and Breedlove, S. M. 1992. Differential effects of testosterone metabolites upon the size of sexually dimorphic motoneurons in adulthood. Hormones and Behavior 26, 204–213.CrossRefGoogle ScholarPubMed
Ganswindt, A., Rasmussen, H. B., Heistermann, M., and Hodges, J. K. 2005. The sexually active states of free-ranging male African elephants (Loxodonta africana): defining musth and non-musth using endocrinology, physical signals, and behavior. Hormones and Behavior 47, 83–91.CrossRefGoogle ScholarPubMed
Gao, H. B., Ge, R. S., Lakshmi, V., Marandici, A., and Hardy, M. P. 1996a. Hormonal regulation of oxidative and reductive activities of 11β-hydroxysteroid dehydrogenase in rat Leydig cells. Endocrinology 138, 156–161.CrossRefGoogle Scholar
Gao, H. B., Shan, L. X., Monder, C., and Hardy, M. P. 1996b. Supression of endogenous corticosterone levels in vivo increases the steroidogenic capacity of purified rat Leydig cells in vitro. Endocrinology 137, 1741–1718.CrossRefGoogle Scholar
Gardner, L., Anderson, T., Place, A. R., Dixon, B., and Elizur, A. 2005. Sex change strategy and the aromatase genes. Journal of Steroid Biochemistry and Molecular Biology 94, 395–404.CrossRefGoogle ScholarPubMed
Girman, D. J., Mills, M. G. L., Geffen, E., and Wayne, R. K. 1997. A genetic analysis of social structure and dispersal in African wild dogs (Lycaon pictus). Behavioral Ecology and Sociobiology 40, 187–198.CrossRefGoogle Scholar
Godwin, J. and Crews, D. 2002. Hormones, brain and behavior in reptiles. In Pfaff, D. W., Arnold, A. P., Etgen, A. M., Farbach, S. E., and Rubin, R. T. (eds.) Hormones, Brain and Behavior, vol. 2, pp. 649–798. New York: Academic Press.Google Scholar
Godwin, J., Crews, D., and Warner, R. R. 1996. Behavioural sex change in the absence of gonads in a coral reef fish. Proceedings of the Royal Society of London B 263, 1683–1688.CrossRefGoogle Scholar
Gonçalves, D. M., Matos, R., Fagundes, T., and Oliveira, R. F. 2005. Do bourgeois males of the peacock blenny, Salaria pavo, discriminate females from female-mimicking sneaker males?Ethology 111, 559–572.CrossRefGoogle Scholar
Gonçalves, E. J. and Almada, V. C. 1997. Sex differences in resource utilization by the peacock blenny. Journal of Fish Biology 51, 624–633.CrossRefGoogle Scholar
Gonçalves, E. J., Almada, V. C., Oliveira, R. F., and Santos, A. J. 1996. Female mimicry as a mating tactic in males of the blenniid fish Salaria pavo. Journal of the Marine Biological Association of the UK 76, 529–538.CrossRefGoogle Scholar
Goodson, J. and Bass, A. H. 2001. Social behaviour functions and related anatomical characteristics of vasotocin/ vasopressin systems in vertebrates. Brain Research Reviews 35, 246–265.CrossRefGoogle ScholarPubMed
Gould, L. 2005. Variation in fecal testosterone levels, intermale aggression, dominance rank and age during mating and post-mating periods in wild adult male ring-tailed lemurs (Lemur catta). American Journal of Physical Anthropology Suppl. 40, 108.Google Scholar
Gray, P. B. 2003. Marriage, parenting and testosterone variation among Kenyan Swahili men. American Journal of Physical Anthropology 122, 279–286.CrossRefGoogle ScholarPubMed
Griffin, A. S., Pemberton, J. M., Brotherton, P. N. M., et al. 2003. A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behavioral Ecology 14, 472–480.CrossRefGoogle Scholar
Grober, M. S. 1998. Socially controlled sex change: integrating ultimate and proximate levels of analysis. Acta Ethologica 1, 3–17.Google Scholar
Gross, M. R. 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11, 92–98.CrossRefGoogle ScholarPubMed
Grutzner, F., Rens, W., Tsend-Ayush, E., et al. 2004. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917.CrossRefGoogle Scholar
Haig, S. M., Walters, J. R., and Plissner, J. H. 1994. Genetic evidence for monogamy in the cooperatively breeding red-cockaded woodpecker. Behavioral Ecology and Sociobiology 34, 295–303.CrossRefGoogle Scholar
Haydock, J., Koenig, W. D., and Stanback, M. T. 2001. Shared parentage and incest avoidance in the cooperatively breeding acorn woodpecker. Molecular Ecology 10, 1515–1525.CrossRefGoogle ScholarPubMed
Hews, D. K. and Moore, M. C. 1996. A critical period for the organization of alternative male phenotypes of tree lizards by exogenous testosterone?Physiology and Behavior 60, 425–429.CrossRefGoogle ScholarPubMed
Hews, D. K., Knapp, R., and Moore, M. C. 1994. Early exposure to androgens affects adult expression of alternative male types in tree lizards. Hormones and Behavior 28, 96–115.CrossRefGoogle ScholarPubMed
Hofmann, H. A. 2003. Functional genomics of neural and behavioral plasticity. Journal of Neurobiology 54, 272–282.CrossRefGoogle ScholarPubMed
Hourigan, T. F., Nakamura, N., Nagahama, Y., Yamauchi, K., and Grau, E. G. 1991. Histology, ultrastructure, and in vitro steroidogenesis of the testes of two male phenotypes of the protogynous fish, Thalassoma duperrey (Labridae). General and Comparative Endocrinology 83, 193–217.CrossRefGoogle Scholar
Hughes, J. M., Mather, P. B., Toon, A., et al. 2003. High levels of extra-group paternity in a population of Australian magpies Gymnorhina tibicen: evidence from microsatellite analysis. Molecular Ecology 12, 3441–3450.CrossRefGoogle Scholar
Illius, A. W., Haynes, N. B., Lamming, G. E., et al. 1983. Evaluation of LH-RH stimulation of testosterone as an index of reproductive status in rams and its application in wild antelope. Journal of Reproduction and Fertility 68, 105–112.CrossRefGoogle ScholarPubMed
Jennings, D. H., Moore, M. C., Knapp, R., Matthews, L., and Orchinik, M. 2000. Plasma steroid-binding globulin mediation of differences in stress reactivity in alternative male phenotypes in tree lizards, Urosaurus ornatus. General and Comparative Endocrinology 120, 289–299.CrossRefGoogle ScholarPubMed
Jones, C. B. 1995. Alternative reproductive behaviors in the mantled howler monkey (Alouatta palliata Gray): testing Carpenter's hypothesis. Boletín de Primatología Latina 5, 1–5.Google Scholar
Keane, B., Waser, P. M., Creel, S. R., et al. 1994. Subordinate reproduction in dwarf mongooses. Animal Behaviour 47, 65–75.CrossRefGoogle Scholar
Ketterson, E. D. and Nolan, V. Jr. 1999. Adaptation, exaptation, and constraint: a hormonal perspective. American Naturalist 154, S4–S25.CrossRefGoogle ScholarPubMed
Khalil, A. M., Murakami, N., and Kaseda, Y. 1998. Relationship between plasma testosterone concentrations and age, breeding season and harem size in Misaki feral horses. Journal of Veterinary Medical Science 60, 643–645.CrossRefGoogle ScholarPubMed
Khan, M. Z., McNabb, F. M. A., Walters, J. R., and Sharp, P. J. 2001. Patterns of testosterone and prolactin concentrations and reproductive behavior of helpers and breeders in the cooperatively breeding red-cockaded woodpecker (Picoides borealis). Hormones and Behavior 40, 1–13.CrossRefGoogle Scholar
Kim, S. J., Ogasawara, K., Park, J. G., Takemura, A., and Nakamura, M. 2002. Sequence and expression of androgen receptor and estrogen receptor gene in the sex types of protogynous wrasse, Heliochoeres trimaculatus. General and Comparative Endocrinology 127, 165–173.CrossRefGoogle ScholarPubMed
Kimball, R. T. and Ligon, J. D. 1999. Evolution of avian plumage dichromatism from a proximate perspective. American Naturalist 154, 182–193.CrossRefGoogle Scholar
Kindler, P. M., Philipp, D. P., Gross, M. R., and Bahr, J. M. 1989. Serum 11-ketotestosterone and testosterone concentrations associated with reproduction in male bluegill (Lepomis macrochirus: Centrarchidae). General and Comparative Endocrinology 75, 446–453.CrossRefGoogle Scholar
Knapp, R. 2003. Endocrine mediation of vertebrate male alternative reproductive tactics: the next generation of studies. Integrative and Comparative Biology 43, 658–668.CrossRefGoogle Scholar
Knapp, R. and Moore, M. C. 1996. Male morphs in tree lizards, Urosaurus ornatus, have different delayed hormonal responses to aggressive encounters. Animal Behaviour 52, 1045–1055.CrossRefGoogle Scholar
Knapp, R. and Moore, M. C. 1997. Male morphs in tree lizards have different testosterone responses to elevated levels of corticosterone. General and Comparative Endocrinology 107, 273–279.CrossRefGoogle ScholarPubMed
Knapp, R., Carlisle, S. L., and Jessop, T. S. 2002. A model for androgen–glucocorticoid interactions in male alternative reproductive tactics: potential roles for steroidogenic enzymes. Hormones and Behavior 41, 475.Google Scholar
Knapp, R., Hews, D. K., Thompson, C. W., Ray, L. E., and Moore, M. C. 2003. Environmental and endocrine correlates of tactic switching by nonterritorial male tree lizards (Urosaurus ornatus). Hormones and Behavior 43, 83–92.CrossRefGoogle Scholar
Kraak, S. B. M. and Pen, I. R. 2002. Sex ratios: concepts and research methods. In Hardy, I. C. W. (ed.) Sex Determining Mechanisms in Vertebrates, pp. 158–177. Cambridge, UK: Cambridge University Press.Google Scholar
Kraus, C., Heistermann, M., and Kappeler, P. M. 1999. Physiological supression of sexual function of subordinate males: a subtle form of intrasexual competition among male sifakas (Propithecus verreauxi)?Physiology and Behavior 66, 855–861.CrossRefGoogle Scholar
Lacey, E. A. and Sherman, P. W. 1991. Social organization of naked mole-rat colonies: evidence for division of labour. In Sherman, P. W., Jarvis, J. U. M., and Alexander, R. D. (eds.) The Biology of the Naked Mole-Rat, pp. 275–336. Princeton, NJ: Princeton University Press.Google Scholar
Lank, D. B., Coupe, M., and Wynne-Edwards, K. E. 1999. Testosterone-induced male traits in female ruffs (Philomachus pugnax): autosomal inheritance and gender differentiation. Proceedings of the Royal Society of London B 266, 2323–2330.CrossRefGoogle Scholar
Leary, C. J., Jessop, T. S., Garcia, A. M., and Knapp, R. 2004. Steroid hormone profiles and relative body condition of calling and satellite toads: implications for proximate regulation of behavior in anurans. Behavioral Ecology 15, 313–320.CrossRefGoogle Scholar
Lee, J. S. F. and Bass, A. H. 2004. Effects of 11-ketotestosterone on brain, sonic muscle, and behavior in type-II midshipman fish. Hormones and Behavior 46, 115–116.Google Scholar
Lozano, G. A. and Lank, D. B. 2004. Immunocompetence and testosterona-induced condition traits in male ruffs (Philomachus pugnax). Animal Biology 54, 315–329.CrossRefGoogle Scholar
Lynch, J. W., Ziegler, T. E., and Strier, K. B. 2002. Individual and seasonal variation in fecal testosterone and cortisol in wild male tufted capuchin monkeys, Cebus apella nigritus. Hormones and Behavior 41, 275–287.CrossRefGoogle ScholarPubMed
Lynch Alfaro, J. W. 2005. Male mating strategies and reproductive constraints in a group of wild tufted capuchin monkeys, Cebus apella nigritus. American Journal of Primatology 67, 313–328.CrossRefGoogle Scholar
Maggioncalda, A. N., Sapolsky, R. M., and Czekala, N. M. 1999. Reproductive hormone profiles in captive male orangutans: implications for understanding developmental arrest. American Journal of Physical Anthropology 109, 19–32.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Maggioncalda, A. N., Czekala, N. M., and Sapolsky, R. M. 2000. Growth hormone and thyroid stimulating hormone concentrations in captive male orangutans: implications for understanding developmental arrest. American Journal of Primatology 50, 67–76.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Maggioncalda, A. N., Czekala, N. M., and Sapolsky, R. M. 2002. Male orangutan subadulthood: a new twist on the relationship between chronic stress and developmental arrest. American Journal of Physical Anthropology 118, 25–32.CrossRefGoogle ScholarPubMed
Maney, D. L., Erwin, K. L., and Goode, C. T. (2005). Neuroendocrine correlates of behavioral polymorphism in white-throated sparrows. Hormones and Behavior 48, 196–206.CrossRefGoogle ScholarPubMed
MartinII, L. B., Scheuerlein, A., and Wikelski, M. 2003. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs?Proceedings of the Royal Society of London B 270, 153–158.CrossRefGoogle ScholarPubMed
Mason, R. T. 1992. Reptilian pheromones. In Gans, C. and Crews, D. (eds.) Hormones, Brain and Behavior, vol. 18, Biology of the Reptilia, pp. 114–228. Chicago, IL: University of Chicago Press.Google Scholar
Mason, R. T. and Crews, D. 1985. Female mimicry in garter snakes. Nature 316, 59–60.CrossRefGoogle ScholarPubMed
Matsuda, M., Nagahama, Y., Shinomiya, A., et al. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.CrossRefGoogle ScholarPubMed
Mayer, I., Lundqvist, H., Berglund, I., et al. 1990. Seasonal endocrine changes in Baltic salmon, Salmo salar, immature parr and mature male parr. 1. Plasma levels of five androgens, 17α-hydroxy-20β-dihydroprogesterone, and 17β-estradiol. Canadian Journal of Zoology 68, 1360–1365.CrossRefGoogle Scholar
Mays, N. A., Vleck, C. M., and Dawson, J. 1991. Plasma luteinizing hormone, steroid hormones, behavioral role, and nest stage in cooperatively breeding harris' hawks (Parabuteo unicinctus). Auk 108, 619–637.Google Scholar
McDonnell, S. M. and Murray, S. C. 1995. Bachelor and harem stallion behavior and endocrinology. Biology of Reproduction Monographs 1, 577–590.Google Scholar
Mendonça, M. T., Licht, P., Ryan, M. J., and Barnes, R. 1985. Changes in hormone levels in relation to breeding behavior in male bullfrogs (Rana catesbeiana) at the individual and population levels. General and Comparative Endocrinology 58, 270–279.CrossRefGoogle ScholarPubMed
Ming, G.-L. and Song, H. 2005. Adult neurogenesis in the mammalian central nervous system. Annual Reviews in Neuroscience 28, 223–250.CrossRefGoogle ScholarPubMed
Mizusaki, H., Kawabe, K., Mukai, T., et al. 2003. Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by wnt4 in the female developing gonad. Molecular Endocrinology 17, 507–519.CrossRefGoogle ScholarPubMed
Modesto, T. and Canário, A. V. M. 2003a. Morphometric changes and sex steroid levels during the annual reproductive cycle of the Lusitanian toadfish, Halobatrachus didactylus. General and Comparative Endocrinology 131, 220–231.CrossRefGoogle Scholar
Modesto, T. and Canário, A. V. M. 2003b. Hormonal control of swimbladder sonic muscle dimorphism in the Lusitanian toadfish Halobatrachus didactylus. Journal of Experimental Biology 206, 3467–3477.CrossRefGoogle Scholar
Moore, M. C. 1991. Application of organization-activation theory to alternative male reproductive strategies: a review. Hormones and Behavior 25, 154–179.CrossRefGoogle ScholarPubMed
Moore, M. C., Hews, D. K., and Knapp, R. 1998. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. American Zoologist 38, 133–151.CrossRefGoogle Scholar
Mooring, M. S., Patton, M. L., Lance, V. A., et al. 2004. Fecal androgens of bison bulls during the rut. Hormones and Behavior 46, 392–398.CrossRefGoogle ScholarPubMed
Morrish, B. C. and Sinclair, A. H. 2002. Vertebrate sex determination: many means to an end. Reproduction 124, 447–457.CrossRefGoogle Scholar
Moss, A. M., Clutton-Brock, T. H., and Monfort, S. L. 2001. Longitudinal gonadal steroid excretion in free-living male and female meerkats (Suricata suricatta). General and Comparative Endocrinology 122, 158–171.CrossRefGoogle Scholar
Muehlenbein, M. P., Watts, D. P., and Whitten, P. 2004. Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National park, Uganda. American Journal of Primatology 64, 71–82.CrossRefGoogle ScholarPubMed
Mulder, R. A., Duna, P. O., Cockburn, A., Lazenby-Cohen, K. A., and Howell, M. J. 1994. Helpers liberate female fairy-wrens from constraints on extra-pair mate choice. Proceedings of the Royal Society of London B 255, 223–229.CrossRefGoogle Scholar
Muller, M. N. and Wrangham, R. W. 2004a. Dominance, aggression and testosterone in wild chimpanzees: a test of the “challenge hypothesis.”Animal Behaviour 67, 113–123.CrossRefGoogle Scholar
Muller, M. N. and Wrangham, R. W. 2004b. Dominance, cortisol and stressing wild chimpanzees (Pan troglodytes schweinfurthii). Behavioral Ecology and Sociobiology 55, 332–340.CrossRefGoogle Scholar
Munday, P. and Jones, G. 1998. Bi-directional sex change in a coral-dwelling goby. Behavioral Ecology and Sociobiology 43, 371–377.CrossRefGoogle Scholar
Nanda, I., Kondo, M., Hornung, U., et al. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proceedings of the National Academy of Sciences of the United States of America 99, 11778–11783.CrossRefGoogle Scholar
Nelson, R. J. 2005. An Introduction to Behavioral Endocrinology, 3rd edn. Sunderland, MA: Sinauer Associates.Google Scholar
Nievergelt, C. M., Digby, L. J., Ramiakrishnan, U., and Woodruff, D. S. 2000. Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. International Journal of Primatology 21, 1–20.CrossRefGoogle Scholar
Norris, K. and Evans, M. R. 2000. Ecological immunity: life history trade-offs and immune defense in birds. Behavioral Ecology 11, 19–20.CrossRefGoogle Scholar
Oliveira, R. F. 2004. Social modulation of androgens in vertebrates: mechanisms and function. Advances in the Study of Behavior 34, 165–239.CrossRefGoogle Scholar
Oliveira, R. F. 2005. Neuroendocrine mechanisms of alternative reproductive tactics in fish. In Sloman, K. A., Wilson, R. W., and Balshine, S. (eds.) Fish Physiology, vol. 24, Behavior and Physiology of Fish, pp. 297–357. New York: Elsevier.Google Scholar
Oliveira, R. F. and Almada, V. C. 1998. Mating tactics and male–male courtship in the lek-breeding cichlid Oreochromis mossambicus. Journal of Fish Biology 52, 1115–1129.Google Scholar
Oliveira, R. F., Almada, V. C., and Canario, A. V. M. 1996. Social modulation of sex steroid concentrations in the urine of male cichlid fish Oreochromis mossambicus. Hormones and Behavior 30, 2–12.CrossRefGoogle ScholarPubMed
Oliveira, R. F., Miranda, J. S., Carvalho, N., et al. 2000. Male mating success in the Azorean rock-pool blenny: the effects of body size, male behaviour and nest characteristics. Journal of Fish Biology 57, 1416–1428.CrossRefGoogle Scholar
Oliveira, R. F., Almada, V. C., Gonçalves, E. J., Forsgren, E., and Canario, A. V. M. 2001a. Androgen levels and social interactions in breeding males of the peacock blenny. Journal of Fish Biology 58, 897–908.CrossRefGoogle Scholar
Oliveira, R. F., Canario, A. V. M., and Grober, M. S. 2001b. Male sexual polymorphism, alternative reproductive tactics and androgens in combtooth blennies (Pisces: Blenniidae). Hormones and Behavior 40, 266–275.CrossRefGoogle Scholar
Oliveira, R. F., Canário, A. V. M., Grober, M. S., and Santos, R. S. 2001c. Endocrine correlates of alternative reproductive tactics and male polymorphism in the Azorean rock-pool blenny, Parablennius sanguinolentus parvicornis. General and Comparative Endocrinology 121, 278–288.CrossRefGoogle Scholar
Oliveira, R. F., Carneiro, L. A., Gonçalves, D. M., Canario, A. V. M., and Grober, M. S. 2001d. 11-ketotestosterone inhibits the alternative mating tactic in sneaker males of the peacock blenny, Salaria pavo. Brain, Behavior and Evolution 58, 28–37.CrossRefGoogle Scholar
Oliveira, R. F., Carneiro, L. A., Canário, A. V. M., and Grober, M. S. 2001e. Effects of androgens on social behaviour and morphology of alternative reproductive males of the Azorean rock-pool blenny. Hormones and Behavior 39, 157–166.CrossRefGoogle Scholar
Oliveira, R. F., Hirschenhauser, K., Carneiro, L. A., and Canario, A. V. M. 2002. Social modulation of androgens in male teleost fish. Comparative Biochemistry and Physiology B 132, 203–215.CrossRefGoogle ScholarPubMed
Oliveira, R. F., Hirschenhauser, K., Canario, A. V. M., and Taborsky, M. 2003. Androgen levels of reproductive competitors in a cooperatively breeding cichlid. Journal of Fish Biology 63, 1615–1620.CrossRefGoogle Scholar
Oliveira, R. F., Ros, A. F. H., and Gonçalves, D. M. 2005. Intra-sexual variation in male reproduction in teleost fish: a comparative approach. Hormones and Behavior 48, 430–439.CrossRefGoogle ScholarPubMed
O'Riain, M. J., Jarvis, J. U. M., and Faulkes, C. G. 1996. A dispersive morph in the naked mole-rat. Nature 380, 619–621.CrossRefGoogle ScholarPubMed
O'Riain, M. J., Bennett, N. C., Brotherton, P. N. M., McIlrath, G., and Clutton-Brock, T. 2000a. Reproductive suppression and inbreeding avoidance in wild populations of cooperatively breeding meerkats (Suricata suricatta). Behavioral Ecology and Sociobiology 48, 471–477.CrossRefGoogle Scholar
O'Riain, M. J., Jarvis, J. U. M., Alexander, R., Buffenstein, R., and Peeters, C. 2000b. Morphological castes in a vertebrate. Proceedings of the National Academy of Sciences of the United States of America 97, 13194–13197.CrossRefGoogle Scholar
Owens, I. P. F. and Short, R. 1995. Hormonal basis of sexual dimorphism in birds: implications of new theories of sexual selection. Trends in Ecology and Evolution 10, 44–47.CrossRefGoogle ScholarPubMed
Parhar, I. 2002. Cell migration and evolutionary significance of GnRH subtypes. Progress in Brain Research 141, 3–17.CrossRefGoogle ScholarPubMed
Pelletier, F., Bauman, J., and Festa-Bianchet, M. 2003. Fecal testosterone in bighorn sheep (Ovis canadensis): behavioral and endocrine correlates. Canadian Journal of Zoology 81, 1678–1684.CrossRefGoogle Scholar
Perry, A. N. and Grober, M. S. 2003. A model for social control of sex change: interactions of behavior, neuropetides, glucocorticoids, and sex steroids. Hormones and Behavior 43, 31–38.CrossRefGoogle Scholar
Peters, A., Astheimer, L. B., and Cockburn, A. 2001. The annual testosterone profile in cooperatively breeding superb fairy-wrens, Malurus cyaneus, reflects their extreme infidelity. Behavioral Ecology and Sociobiology 50, 519–527.CrossRefGoogle Scholar
Peters, A., Cockburn, A., and Cunningham, R. 2002. Testosterone treatment suppresses paternal care in superb fairy-wrens, Malurus cyaneus, despite their concurrent investment in courtship. Behavioral Ecology and Sociobiology 51, 538–547.CrossRefGoogle Scholar
Phoenix, C., Goy, R., Gerall, A., and Young, W. 1959. Organizing action of prenatally-administered testosterone proprionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382.CrossRefGoogle Scholar
Pieau, C. and Dorizzi, M. 2004. Oestrogens and temperature-dependent sex determination in reptiles: all is in the gonads. Journal of Endocrinology 181, 367–377.CrossRefGoogle ScholarPubMed
Poiani, A. and Fletcher, T. 1994. Plasma levels of androgens and gonadal development of breeders and helpers in the bell miner (Manorina melanophrys). Behavioral Ecology and Sociobiology 34, 31–41.CrossRefGoogle Scholar
Quinn, J. S., Woolfenden, G. E., Fitzpatrick, J. W., and White, B. N. 1999. Multi-locus DNA fingerprinting supports genetic monogamy in Florida scrub-jays. Behavioral Ecology and Sociobiology 45, 1–10.CrossRefGoogle Scholar
Rachlow, J. L., Berkeley, E. V., and Berger, J. 1998. Correlates of male mating strategies in white rhinos (Ceratotherium simum). Journal of Mammalogy 79, 1317–1324.CrossRefGoogle Scholar
Ray, J. C. and Sapolsky, R. M. 1992. Styles of male social behavior and their endocrine correlates among high-ranking wild baboons. American Journal of Primatology 28, 231–250.CrossRefGoogle Scholar
Reavis, R. H. and Grober, M. S. 1999. An integrative approach to sex change: social, behavioural and neurochemical changes in Lythrypnus dalli (Pisces). Acta Ethologica 2, 51–60.CrossRefGoogle Scholar
Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W., and Aquadro, C. F. 1990. DNA “fingerprinting” reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America 87, 2496–2500.CrossRefGoogle ScholarPubMed
Reinboth, R. and Becker, B. 1984. In vitro studies on steroid metabolism by gonadal tissues from ambisexual teleosts. 1. Conversion of 14-C testosterone by males and females of the protogynous wrasse Coris julis L. General and Comparative Endocrinology 55, 245–250.CrossRefGoogle Scholar
Reyer, H.-U. 1980. Flexible helper structure as an ecological adaptation in the pied kingfisher (Ceryle rudis). Behavioral Ecology and Sociobiology 6, 219–227.CrossRefGoogle Scholar
Reyer, H.-U. 1984. Investment and relatedness: a cost/benefit analysis of breeding and helping in the pied kingfisher (Ceryle rudis). Animal Behaviour 32, 1163–1178.CrossRefGoogle Scholar
Reyer, H.-U., Dittami, J., and Hall, M. R. 1986. Avian helpers at the nest: are they psychologically castrated?Ethology 71, 216–228.CrossRefGoogle Scholar
Rhen, T. and Crews, D. 2002. Variation in reproductive behaviour within a sex: neural systems and endocrine activation. Journal of Neuroendocrinology 14, 517–531.CrossRefGoogle ScholarPubMed
Richardson, D. S., Jury, F. L., Blaakmer, K., Komdeur, J., and Burke, T. 2001. Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Molecular Ecology 10, 2263–2273.CrossRefGoogle Scholar
Ros, A. F. H., Canario, A. V. M., Couto, E., Zeilstra, I., and Oliveira, R. F. 2003. Endocrine correlates of intra-specific variation in the mating system of the St. Peter's fish (Sarotherodon galilaeus). Hormones and Behavior 44, 365–373.CrossRefGoogle Scholar
Ros, A. F. H., Bouton, N., Santos, R. S., and Oliveira, R. F. 2006. Alternative male reproductive tactics and the immuncompetence handicap in the Azorean rock-pool blenny, Parablennius parvicornis. Proceedings of the Royal Society of London B 273, 901–909.CrossRefGoogle Scholar
Rose, R. M., Holaday, J. W., and Bernstein, I. S. 1971. Plasma testosterone, dominance rank and aggressive behaviour in male rhesus monkeys. Nature 231, 366–368.CrossRefGoogle ScholarPubMed
Sands, J. and Creel, S. 2004. Social dominance, aggression and faecal glucocorticoid levels in a wild population of wolves, Canis lupus. Animal Behaviour 67, 387–396.CrossRefGoogle Scholar
Sapolsky, R. M. 1983. Endocrine aspects of social instability in the olive baboon (Papio anubis). American Journal of Primatology 5, 365–379.CrossRefGoogle Scholar
Sapolsky, R. M. and Ray, J. 1989. Styles of dominance and their physiological correlates among wild baboons. American Journal of Primatology 18, 1–13.CrossRefGoogle Scholar
Sapolsky, R. M., Romero, L. M., and Munck, A. U. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21, 55–89.Google ScholarPubMed
Sarre, S. D., Georges, A., and Quinn, A. 2004. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26, 639–645.CrossRefGoogle ScholarPubMed
Sauther, M. L. 1991. Reproductive behavior of free-ranging Lemur catta at Beza Mahafaly Special Reserve, Madagascar. American Journal of Physical Anthropology 84, 463–477.CrossRefGoogle Scholar
Schlinger, B. A., Greco, C., and Bass, A. H. 1999. Aromatase activity in the hindbrain and vocal control region of a teleost fish: divergence among males with alternative reproductive tactics. Proceedings of the Royal Society of London B 266, 131–136.CrossRefGoogle Scholar
Schmidt, L. G., Bradshaw, S. D., and Follett, B. K. 1991. Plasma levels of luteinizing hormone and androgens in relation to age and breeding status among cooperatively breeding Australian magpies (Gymnorhina tibicen Latham). General and Comparative Endocrinology 83, 48–55.CrossRefGoogle Scholar
Schoech, S. J., Mumme, R. L., and Moore, M. 1991. Reproductive endocrinology and mechanisms of breeding inhibition in cooperatively breeding Florida scrub jays (Aphelocoma c. coerulescens). Condor 93, 354–364.CrossRefGoogle Scholar
Schoech, S. J., Mumme, R. L., and Wingfield, J. C. 1996. Delayed breeding in the cooperatively breeding Florida scrub-jay (Aphelocoma coerulescens): inhibition or the absence of stimulation?Behavioral Ecology and Sociobiology 39, 77–90.CrossRefGoogle Scholar
Schulz, R. W. and Miura, T. 2002. Spermatogenesis and its endocrine regulation. Fish Physiology and Biochemistry 26, 43–56.CrossRefGoogle Scholar
Schwarzenberger, F., Sterregaard, F., Elias, F., Baumgartner, R., and Walzer, C. 2004. Who is the boss? Endocrinological evaluation of re-introduced takhis in Takhin Tal: implications and consequences. In Kaczensky, P. (ed.) Abstracts of the 2nd International Workshop on the Re-Introduction of the Przewaski's Horse, pp. 22–23. Takhin Tal (Mongolia): International Takhi Group.Google Scholar
Setchell, J. M. and Dixon, A. F. 2001. Arrested development of secondary sexual adornments in subordinate adult male mandrills (Mandrillus sphinx). American Journal of Physical Anthropology 115, 245–252.CrossRefGoogle Scholar
Sheldon, B. C. and Verhulst, S. 1996. Ecological immunity: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11, 317–321.CrossRefGoogle Scholar
Shine, R., Harlow, P., Lemaster, M. P., Moore, I. T., and Mason, R. T. 2000. The travestite serpent: why do male garter snakes court (some) other males?Animal Behaviour 59, 349–359.CrossRefGoogle ScholarPubMed
Shuster, S. M. and Wade, M. J. 2003. Mating Systems and Strategies. Princeton, NJ: Princeton University Press.Google Scholar
Silverin, B. and Wingfield, J. C. 1982. Patterns of breeding behaviour and plasma levels of hormones in a free-living population of pied flycatchers, Ficedula hypoleuca. Journal of Zoology 198, 117–129.CrossRefGoogle Scholar
Simon, N. G. 2002. Hormonal processes in the development and expression of aggressive behavior. In Pfaff, D. W., Arnold, A. P., Etgen, A. M., Farbach, S. E., and Rubin, R. T. (eds.) Hormones, Brain and Behavior, vol. 1, pp. 339–392. New York: Academic Press.Google Scholar
Sinervo, B., Miles, D. B., Frankino, W. A., Klukowski, M., and DeNardo, D. F. 2000. Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Hormones and Behavior 38, 222–233.CrossRefGoogle ScholarPubMed
Slater, C. H. and Schreck, C. B. 1997. Physiological levels of testosterone kill salmonid leukocytes in vitro. General and Comparative Endocrinology 106, 113–119.CrossRefGoogle ScholarPubMed
Slater, C. H. and Schreck, C. B. 1998. Season and physiological parameters modulate salmonid leucocyte androgen receptor affinity and abundance. Fish and Shellfish Immunology 8, 379–391.CrossRefGoogle Scholar
Slater, C. H., Fitzpatrick, M. S. and Schreck, C. B. 1995. Characterization of an androgen receptor in salmonid lymphocytes: possible link to androgen induced immunosuppression. General and Comparative Endocrinology 100, 218–225.CrossRefGoogle ScholarPubMed
Solomon, N. G. and French, J. A. (eds.) 1997. Cooperative Breeding in Mammals. Cambridge, UK: Cambridge University Press.Google Scholar
Smith, C. A. and Sinclair, A. H. 2004. Sex determination: insights from the chicken. BioEssays 26, 120–132.CrossRefGoogle ScholarPubMed
Stevenson, I. R. and Bancroft, D. R. 1995. Fluctuating trade-offs favour precocial maturity in male Soay sheep. Proceedings of the Royal Society of London B 262, 267–275.CrossRefGoogle ScholarPubMed
Sussman, R. W. 1991. Demography and social organization of free-ranging Lemur catta in the Beza Mahafaly Reserve, Madagascar. American Journal of Physical Anthropology 84, 43–58.CrossRefGoogle Scholar
Swain, A., Narvaez, S., Burgoyne, P., Camerino, G., and Lovellbadge, R. 1998. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761–767.CrossRefGoogle ScholarPubMed
Taborsky, M. 1994. Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Advances in the Study of Behavior 23, 1–100.CrossRefGoogle Scholar
Taborsky, M. 1997. Bourgeois and parasitic tactics: do we need collective, functional terms for alternative reproductive behaviours?Behavioral Ecology and Sociobiology 41, 361–362.CrossRefGoogle Scholar
Taborsky, M. 1998. Sperm competition in fish: “bourgeois” males and parasitic spawning. Trends in Ecology and Evolution 13, 222–227.CrossRefGoogle ScholarPubMed
Thompson, C. W. and Moore, M. C. 1992. Behavioral and hormonal correlates of alternative reproductive strategies in a polygynous lizard: tests of the relative plasticity and challenge hypotheses. Hormones and Behavior 26, 568–585.CrossRefGoogle Scholar
Tousignant, A. and Crews, D. 1995. Incubation temperature and gonadal sex affect growth and physiology in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. Journal of Morphology 224, 159–170.CrossRefGoogle Scholar
Uglem, I., Rosenqvist, G., and Schioler Wasslavik, H. 2000. Phenotypic variation between dimorphic males in corkwing wrasse (Symphodus melops L.). Journal of Fish Biology 57, 1–14.CrossRefGoogle Scholar
Uglem, I., Galloway, T. F., Rosenqvist, G., and Folstad, I. 2001. Male dimorphism, sperm traits and immunology in the corkwing wrasse (Symphodus melops L.). Behavioral Ecology and Sociobiology 50, 511–518.CrossRefGoogle Scholar
Uglem, I., Mayer, I., and Rosenqvist, G. 2002. Variation in plasma steroids and reproductive traits in dimorphic males of corkwing wrasse (Symphodus melops L.). Hormones and Behavior 41, 396–404.CrossRefGoogle Scholar
Vaiman, D. and Pailhoux, E. 2000. Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade. Trends in Genetics 16, 488–494.CrossRefGoogle ScholarPubMed
Valencia, J., Cruz, C., and González, B. 2003. Flexible helping behaviour in the azure-winged magpie. Ethology 109, 545–558.CrossRefGoogle Scholar
Virgin, C. E. and Sapolsky, R. M. 1997. Styles of male social behavior and their endocrine correlates among low-ranking baboons. American Journal of Primatology 42, 25–39.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Vleck, C. M. and Brown, J. L. 1999. Testosterone and social and reproductive behaviour in Aphelcoma jays. Animal Behaviour 58, 943–951.CrossRefGoogle ScholarPubMed
Volff, J.-N., Kondo, M., and Schartl, M. 2003. Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish. Trends in Genetics 19, 196–199.CrossRefGoogle ScholarPubMed
Watson, N. V., Freeman, L. M., and Breedlove, S. M. 2001. Neuronal size in the spinal nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic androgen insensitivity. Journal of Neuroscience 21, 1062–1066.CrossRefGoogle ScholarPubMed
Wedekind, C. and Folstad, I. 1994. Adaptive and non-adaptive immunosuppression by sex hormones. American Naturalist 143, 936–938.CrossRefGoogle Scholar
West, P. M. and Packer, C. 2002. Sexual selection, temperature and the lion's mane. Science 297, 1339–1343.CrossRefGoogle ScholarPubMed
Whitfield, C. W., Cziko, A. M., and Robinson, G. E. 2003. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302, 296–299.CrossRefGoogle ScholarPubMed
Wikelski, M., Steiger, S. S., Gall, B., and Nelson, K. N. 2005. Sex, drugs, and mating role: testosterone-induced phenotype-switching in Galapagos marine iguanas. Behavioral Ecology 16, 260–268.CrossRefGoogle Scholar
Wilson, J. D., Leihy, M. W., Shaw, G., and Renfree, M. B. 2002. Androgen physiology: unsolved problems at the millennium. Molecular and Cellular Endocrinology 198, 1–5.CrossRefGoogle ScholarPubMed
Wingfield, J. C., Hegner, R. E., Dufty, A. M., and Ball, G. F. 1990. The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist 136, 829–846.CrossRefGoogle Scholar
Wingfield, J. C., Hegner, R. E., and Lewis, D. M. 1991. Circulating levels of luteinizing hormone and steroid hormones in relation to social status in the cooperatively breeding white-browed sparrow weaver, Plocepasser mahali. Journal of Zoology 225, 43–58.CrossRefGoogle Scholar
Zucker, E. L., O'Neil, J. A. S., and Harrison, R. M. 1996. Fecal testosterone values for free-ranging male mantled howling monkeys (Alouatta palliata) in Costa Rica. IPS/ASP 1996 Congress Abstracts, p. 112.
Zupanc, G. K. H. 2001. A comparative approach towards the understanding of adult neurogenesis. Brain, Behavior and Evolution 58, 246–249.CrossRefGoogle ScholarPubMed
Zupanc, G. K. H. and Lamprecht, J. 2000. Towards a cellular understanding of motivation: structural reorganization and biochemical switching as key mechanisms of behavioral plasticity. Ethology 106, 467–477.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×