Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T03:03:47.667Z Has data issue: false hasContentIssue false

17 - Introduction to the Inefficiency of Equilibria

from III - Quantifying the Inefficiency of Equilibria

Published online by Cambridge University Press:  31 January 2011

Tim Roughgarden
Affiliation:
Department of Computer Science Stanford University
Éva Tardos
Affiliation:
Department of Computer Science Cornell University
Noam Nisan
Affiliation:
Hebrew University of Jerusalem
Tim Roughgarden
Affiliation:
Stanford University, California
Eva Tardos
Affiliation:
Cornell University, New York
Vijay V. Vazirani
Affiliation:
Georgia Institute of Technology
Get access

Summary

Abstract

This chapter presents motivation and definitions for quantifying the inefficiency of equilibria in noncooperative games. We illustrate the basic concepts in four fundamental network models, which are studied in depth in subsequent chapters. We also discuss how measures of the inefficiency of equilibria can guide mechanism and network design.

Introduction

The Inefficiency of Equilibria

The previous two parts of this book provided numerous examples demonstrating that the outcome of rational behavior by self-interested players can be inferior to a centrally designed outcome. This part of the book is devoted to the question: by how much?

To begin, recall the Prisoner's Dilemma (Example 1.1). Both players suffer a cost of 4 in the unique Nash equilibrium of this game, while both could incur a cost of 2 by coordinating. There are several ways to formalize the fact that the Nash equilibrium in the Prisoner's Dilemma is inefficient. A qualitative observation is that the equilibrium is strictly Pareto inefficient, in the sense that there is another outcome in which all of the players achieve a smaller cost. This qualitative perspective is particularly appropriate in applications where the “cost” or “payoff” to a player is an abstract quantity that only expresses the player's preferences between different outcomes. However, payoffs and costs have concrete interpretations in many applications, such as money or the delay incurred in a network.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×