Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T13:24:48.108Z Has data issue: false hasContentIssue false

9 - Packaging

Published online by Cambridge University Press:  05 February 2014

Harrie A. C. Tilmans
Affiliation:
Interuniversity Microelectronics Center (IMEC)
Anne Jourdain
Affiliation:
Interuniversity Microelectronics Center (IMEC)
Piet De Moor
Affiliation:
Interuniversity Microelectronics Center (IMEC)
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

MEMS devices, unlike conventional ICs, contain movable fragile parts that must be packaged in a clean and stable environment. The package or encapsulation should not only offer protection to the MEMS during operation but also during fabrication. The specific ambient (i.e. gas composition and pressure) of the package housing depends on the type of RF MEMS. For instance, switches are preferably housed in an inert ambient (e.g. dry nitrogen) at, or slightly below, atmospheric pressure. The same applies to RF MEMS variable capacitors and tuneable inductors. Micromechanical resonators, on the other hand, require a high level of vacuum (e.g. ambient pressure <1 Pa) to attain high-frequency stability and to have sufficiently low damping at resonance. Practically, all MEMS are adversely affected by corrosive ambients like moisture. To ensure stability of the MEMS, the package must offer hermetic (or near-hermetic) seals. Sealing and encapsulation are crucial to provide the required reliability of the packaged devices.

Essentially, two approaches for device encapsulation can be defined. Encapsulation can be accomplished using conventional 1-level ceramic (e.g. LTCC), AlN or metal canister (usually abbreviated to ‘can’) packages [1]. The 1-level package consists of the chip’s capsule and associated leads for interconnecting the chip to the outside world [1]. For ceramic packages, encapsulation can be achieved by soldering or brazing a ceramic cap or lid to a metal sealing ring on the substrate, thus defining the cavity housing of the MEMS device [1–4]. Metal hermetic packages are commonly welded, soldered or brazed [1, 4, 5]. Cavity formation during 1-level packaging is an established method and allows a certain flexibility with respect to the composition of sealing gas and pressure, but ceramic or metal packages are expensive. The high cost of 1-level packaging is viable for telecommunications base stations, satellites and defence systems, but not for high-volume applications like mobile phone handsets. Furthermore, 1-level packaging poses technological complications – mainly due to handling of the MEMS after their release. For instance, the standard wafer sawing or the injection moulding process of plastic packages cannot be used, because it may destroy or contaminate the released MEMS device. Once the wafer is diced, the MEMS chips must be handled in an extremely clean environment, because cleaning in a liquid is no longer possible at this stage. All this suggests that packaging is preferably carried out during wafer processing, prior to die singulation.

Type
Chapter
Information
Advanced RF MEMS , pp. 232 - 270
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tummala, R. R., Rymaszewski, E. J. and Klopfenstein, A. G.: Microelectronics Packaging Handbook. New York, NY: Van Nostrand Reinhold, 1989Google Scholar
Leung, A. M., Jones, J., Czyzewska, E., Chen, J. and Woods, B., “Micromachined accelerometer based on convection heat transfer”, Proceedings of MEMS’98, Heidelberg, Germany, pp. 627–30, 1998
Sparks, D. R., Jordan, L. and Frazee, J. H., “Flexible vacuum-packaging method for resonating micromachines”, Sens. Actuators A, Phys., vol. 55, no. 2--3, pp. 179–83, 1996CrossRefGoogle Scholar
Khanna, P. K., Bhatnagar, S. K. and Gust, W., “Analysis of packaging and sealing techniques for microelectronic modules and recent advances”, Microelectron. Int., vol. 16, no. 2, pp. 8–12, 1999CrossRefGoogle Scholar
Core, T. A., Tsang, W. K. and Sherman, S. J., “Fabrication technology for an integrated surface-micromachined sensor”, Solid State Technol., pp. 39–47, Oct. 1993Google Scholar
Cho, S. T. and Erdmann, F. M., “An on-chip hermetic package technology for micromechanical devices”, Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, pp. 229–32, Jun. 1998Google Scholar
Tilmans, H. A. C.Fullin, E., Ziad, H., Van de Peer, M., Kesters, J., Van Geffen, E., Bergqvist, J., Pantus, M., Beyne, E., Baert, K. and Naso, F., “A fully-packaged electromagnetic microrelay”, Proceedings of MEMS’99, Orlando, FL, pp. 25–30, Jan. 1999
Gooch, R., Schimert, T., McCardel, W., Ritchey, B., Gilmour, D. and Koriarz, W., “Wafer-level vacuum packaging for MEMS”, J. Vac. Sci. Technol. A, 17, no. 4, pp. 2295–9, Jul/Aug. 1999CrossRefGoogle Scholar
Lin, L., “MEMS post-packaging by localized heating and bonding”, IEEE Trans. Adv. Packag., vol. 23, no. 4, pp. 608–16, 2000CrossRefGoogle Scholar
Tilmans, H. A. C., Van de Peer, M. D. J. and Beyne, E., “The indent reflow sealing (IRS) technique – a method for the fabrication of sealed cavities for MEMS devices”, J. Microelectromech. Syst., vol. 9, no. 2, pp. 206–17, Jun. 2000CrossRefGoogle Scholar
Najafi, K., “Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS”, Proc. SPIE, vol. 4979, pp. 1–19, 2003CrossRefGoogle Scholar
Fujii, M., Sato, S., Hosoya, K. and Imanaka, K., “Micro machined relay with vertical feed through and wirebond-less package”, Proceedings of the 51st relay (NARM) Conference, pp. 16.1–16.4, 2001Google Scholar
Chandrasekhar, A., Brebels, S., Stoukatch, S., Beyne, E., De Raedt, W. and Nauwelaers, B., “The influence of packaging materials on RF performance”, Microelectron. Reliab., vol. 43, pp. 351–7, 2003CrossRefGoogle Scholar
Ito, M., Maruhashi, K., Senba, N., Takahashi, N. and Ohata, K., “Low cost multi-layer ceramic package for flip-chip MMIC up to W-band”, IEEE MTT-S Digest, pp. 57–60, 2000Google Scholar
Guckel, H. and Burns, D. W., “A technology for integrated transducers”, Proceedings of Transducers’85, Philadelphia, PA, pp. 90–2, Jun. 1985
Mastrangelo, C. H. and Muller, R. S., “Vacuum sealed silicon micromachined incandescent light source”, Proc. IEDM, pp. 503–6, 1989Google Scholar
Guckel, H., Sniegowski, J. J., Cristenson, T. R. and Raissi, F., “The application of fine-grained tensile polysilicon to mechanically resonant transducers”, Sens. Actuators A, Phys., vol. 21--23, pp. 346–51, 1990CrossRefGoogle Scholar
Lin, L., McNair, K. M., Howe, R. T. and Pisano, A. P., “Vacuum encapsulated lateral microresonators”, Proceedings of Transducers’93, Yokohama, pp. 270–3, 1993
Legtenberg, R. and Tilmans, H. A. C., “Electrostatically driven vacuum encapsulated polysilicon resonators, Part I: Design and fabrication”, Sens. Actuators A, Phys., vol. 45, pp. 57–66, 1994CrossRefGoogle Scholar
Tilmans, H. A. C. and Legtenberg, R., “Electrostatically driven vacuum encapsulated polysilicon resonators, Part II: Theory and performance”, Sens. Actuators A, Phys., 45, pp. 67–84, 1994CrossRefGoogle Scholar
Stark, B. H. and Najafi, K., “A low-temperature thin-film electroplated metal vacuum package”, J. Microelectromech. Syst., vol. 13, no. 2, pp. 147–57, Apr. 2004CrossRefGoogle Scholar
Stahl, H., Hoechst, A., Fischer, F., Metzger, L., Reichenbach, R., Laermer, F., Kronmuller, S., Breitschwerdt, K., Gunn, R., Watcham, S., Rusu, C. and Witvrouw, A., “Thin film encapsulation of acceleration sensors using polysilicon sacrificial layers”, Proceedings of Transducers’03, Boston, MA, pp. 1899–1902, 2003Google Scholar
Rusu, C., Jansen, H., Gunn, R. and Witvrouw, A., “Self-aligned 0-level sealing of MEMS devices by a two layer thin film reflow process”, Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP2003), Mandelieu -- La Napoule, France, pp. 245–50, May 2003
Reuter, D., Bertz, A., Werner, T., Nowack, M. and Gessner, T., “Thin film encapsulation of microstructures using sacrificial CF-polymer”, Proceedings of Transducers’07, Lyon, France, pp. 343–6, Jun. 2007
Jourdain, A., De Moor, P., Baert, K., De Wolf, I. and Tilmans, H. A. C., “Mechanical and electrical characterization of BCB as a bond and seal material for cavities housing (RF) MEMS devices”, J. Micromech. Microeng., vol. 15, S89–S96, 2005CrossRefGoogle Scholar
Herrick, K. J., Yook, J.-G. and Katehi, L. P. B., “Microtechnology in the development of three-dimensional circuits”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp. 1832–44, Nov. 1998CrossRefGoogle Scholar
Henderson, R. M., Herrick, K. J., Weller, T. M., Robertson, S. V., Kihm, R. T. and Katehi, L. P. B., “Three-dimensional high-frequency distribution networks-Part II: Packaging and integration”, IEEE Trans. Microw. Theory Tech., vol. 48, no. 10, pp. 1643–51, Oct. 2000CrossRefGoogle Scholar
Tilmans, H. A. C., Ziad, H., Jansen, H., Di Monaco, O., Jourdain, A., De Raedt, W., Rottenberg, X., De Backer, E., De Caussemaeker, A. and Baert, K., “Wafer-level packaged RF MEMS switches fabricated in a CMOS fab”, Proceedings of IEDM 2001, Washington, DC, pp. 921–4, Dec. 2001Google Scholar
Jourdain, A., De Moor, P., Pamidighantam, S. and Tilmans, H. A. C., “Investigation of the hermeticity of BCB-sealed cavities for housing (RF) MEMS devices”, Proceedings of MEMS2002, Las Vegas, NV, pp. 677–80, Jan. 2002
Majumder, S., Lampen, J., Morrison, R. and Maciel, J., “MEMS switches”, IEEE Instrum. Meas. Mag., pp. 12–15, Mar. 2003CrossRefGoogle Scholar
Jourdain, A., Brebels, S., De Raedt, W. and Tilmans, H. A. C., “Influence of 0-level packaging on the microwave performance of RF MEMS devices”, Proceedings of the European Microwave Conference, pp. 403–6, 2001
Carchon, G., Di Monaco, O., Vaesen, K., Brebels, S., De Raedt, W. and Nauwelaers, B.., “Design and characterization of CPW feedthroughs in multi-layer thin-film MCM-D”, Proceedings of RAWCON, Denver, CO, pp. 167–70, Sep. 2000
Min, B. W., Entesari, K. and Rebeiz, G., “DC-50GHz low-loss wafer-scale package for RF MEMS”, Proceedings of the European Microwave Conference, pp. 1289–91, 2004
Fujii, M., Kimura, I., Satoh, T. and Imanaka, K., “RF MEMS switch with wafer level package utilizing frit glass bonding”, Proceedings of the 32nd European Microwave Conference, Milan, Italy, vol. 1, pp. 279–81, Sep. 2002Google Scholar
Margomenos, A., Peroulis, D., Herrick, K. J. and Katehi, L. P. B., “Silicon micromachined packages for RF MEMS switches”, Proceedings of the 31st European Microwave Conference, London, UK, vol. 1, pp. 271–, Sep. 2001Google Scholar
Liu, Y., Li, X., Abe, T., Haga, Y. and Esashi, M., “A thermomechanical relay with microspring contact array”, Proceedings of MEMS, Interlaken, Switzerland, pp. 220–3, Jan. 2001Google Scholar
Park, Y.-K., Park, H.-W., Lee, D.-J., Park, J.-H., Song, I.-S., Kim, S.-W., Song, C.-M., Lee, Y.-H., Kim, C.-J. and Ju, B.-K., “A novel low-loss wafer-level RF MEMS packaging of the RF MEMS devices”, Proceedings of MEMS, Las Vegas, NV, pp. 681–4, Jan. 2002
Kaajakari, V., Kiihamaki, J., Oja, A., Seppa, H., Pierikainem, S., Kokkala, V. and Kuisma, H., “Stability of wafer level vacuum encapsulated single-crystal silicon resonators”, Sens. Actuators A, Phys., vol. 130–131, pp. 42–7, 2005Google Scholar
Reinert, W., Quenzer, J., Longoni, G., Zerbini, S., Fourrier, A., Dragoi, V. and Carli, F., “Vacuum wafer bonding technology”, IMAPS Nordic, 2004Google Scholar
Jourdain, A., Rottenberg, X., Carchon, G. and Tilmans, H. A. C., “Optimization of 0-level packaging for RF MEMS devices”, Proceedings of Transducers’03, Boston, MA, pp. 1915–18, Jun. 2003
Heinrich, W., Jentsch, A. and Baumann, G.., “Millimeterwave characteristics of flip-chip interconnects for multi-chip modules”, 1998 IEEE MTT-S Digest, Baltimore, MD, pp. 1083–6, 1998Google Scholar
Drayton, R. F. and Katehi, L. P. B., “Development of self-packaged high frequency circuits using micromachining techniques”, IEEE Trans. Microw. Theory Tech., vol. 43, no. 9, pp. 2073–80, Sep. 1995CrossRefGoogle Scholar
Maluf, N., An Introduction to Microelectromechanical Systems Engineering, Boston, MA: Artech House, 2000Google Scholar
Madou, M., Fundamentals of Microfabrication, New York, NY: CRC Press, 1997Google Scholar
Audet, S. A. and Edenfeld, K. M., “Integrated sensor wafer-level packaging”, Proceedings of Transducers’97, Chicago, IL, pp. 287–9, Jun. 1997
Kim, B., Candler, R. N., Hopcroft, M., Agarwal, M., Park, W. T. and Kenny, T. W., “Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators”, Sens. Actuators A, Phys., vol. 136, pp. 125–31, 2007CrossRefGoogle Scholar
Greenhouse, H., Hermeticity of Electronic Packages, William Andrew Publishing, 2000Google Scholar
De Moor, P., Baert, K., De Wolf, I., Jourdain, A., Tilmans, H. A. C., Witvrouw, A. and Van Hoof, C., “Characterization of (near) hermetic zero-level packages for MEMSReliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV, San Jose, CA, SPIE, pp. 26–35, Jan. 2005CrossRefGoogle Scholar
De Wolf, I., Jourdain, A., De Moor, P., Tilmans, H. A. C. and Marchand, L., “Hermeticity testing and failure analysis of MEMS packages”, Proceedings of IPFA, Bangalore, India, 2007Google Scholar
Jourdain, A., De Coster, J., De Moor, P., Puers, R. and Tilmans, H. A. C., “Hermeticity investigation of sealed 0-level packages based on the damping characteristics of the MEMS device”, IMAPS Proceedings of the 15th European Microelectronics and Packaging Conference & Exhibition (EMPC2005), Brugge, Belgium, pp. 222–7, Jun. 2005
De Coster, J., Jourdain, A., Puers, R. and Tilmans, H. A. C., “A method to evaluate internal cavity pressure of sealed MEMS devices”, IMAPS Proceedings of the 15th European Microelectronics and Packaging Conference & Exhibition (EMPC2005), Brugge, Belgium, pp. 599–603, Jun. 2005
Gillot, C., Sillon, N., Robert, P., Dahan, E., Baillin, X. and Lagoutte, E., “Wafer level hermetic packaging for above-IC RF MEMS: Process and Characterization”, IMAPS Workshop on Microelectronics, Long Beach, CA, 2004Google Scholar
Gillot, C., Lagoutte, E., Charvet, P. L., Souchon, F. and Sillon, N., “Wafer level thin film encapsulation for MEMS”, Proceedings of the Electronic Packaging Technology Conference, pp. 243–7, 2005
Leedy, K. D., Strawser, R. E., Cortez, R. and Ebel, J. L., “Thin film encapsulated RF MEMS switches”, J. Microelectromech. Syst., vol. 16, no. 2, pp. 304–9, 2007CrossRefGoogle Scholar
Kohno, A., Sasaki, Y., Udo, R., Harada, T. and Usami, M., “Bonding of IC bare chips for microsystems using Ar atom bombardment”, J. Micromech. Microeng., vol. 11, pp. 481–6, 2001CrossRefGoogle Scholar
Wolffenbuttel, R. F. and Wise, K. D., “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature”, Sens. Actuators A, Phys., vol. 43 (1--3), pp. 223–9, 1994CrossRefGoogle Scholar
Jourdain, A., Vaesen, K., Scheer, J. M., Weekamp, J. W., van Beek, J. T. M and Tilmans, H. A. C., “From zero- to second-level packaging of RF MEMS devices”, Proceedings of MEMS, Miami, FL, 2005
Theunis, F., Lisec, T., Reinert, W., Bielen, J., Yang, D., Jongh, M. de and Krusemann, P. V. E., “Novel and efficient packaging technology for RF MEMS devices”, Proc. ECTC2007, pp. 1239–45, 2007Google Scholar
Kim, J., Chiao, M. and Lin, L., “Ultrasonic bonding of In/Au and AL/Al for hermetic sealing of MEMS packaging”, Proceedings of IEEE Micro Electro Mechanical Systems, Las Vegas, NV, pp. 415–18, 2002Google Scholar
Budraa, N. K., Jackson, H. W., Barmatz, M., Pike, W. T. and Mai, J. D., “Low pressure and low temperature hermetic wafer bonding using microwave heating”, IEEE Micro Electro Mechanical Systems, Orlando, FL, pp. 490–2, 1999Google Scholar
Oberhammer, J., Niklaus, F. and Stemme, G., “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities”, Sens. Actuators A, Phys., vol. 105, no. 3, pp. 297–304, 2003CrossRefGoogle Scholar
Wu, J., Pike, R. T., Wong, C. P., Kim, N. P. and Tanielan, M. H., “Evaluation and characterization of reliable non-hermetic conformal coatings for microelectromechanical system (MEMS) device encapsulation”, IEEE Trans. Adv. Packag., vol. 23, vol. 4, pp. 721–7, Nov. 2000Google Scholar
Reimann, M., Ulm, M., Buck, T., Schoebel, J., Dechow, J. and Müller-Fiedler, R., “RF MEMS glass frit packaging”, Proceedings of MICRO SYSTEM Technologies, Munchen, pp. 60–7, Oct. 2003
Chong, S. C., Zhang, X. L., Mohamraj, S., Premachandran, C. S. and Ranganathan, N., “Effect of Passivation on frit glass bonding method for wafer level hermetic sealing on MEMS devices”, Proceedings of the Electronics Packaging Technology Conference, Singapore, pp. 307–310, Dec. 2003
Rebeiz, G. M., Tan, G.-L. and Hayden, J. S., “RF MEMS phase shifters: Design and applications”, IEEE Microw. Mag., pp. 72–81, Jun. 2002CrossRefGoogle Scholar
Oberhammer, J., Tang, M., Liu, A.-Q. and Stemme, G., “Mechanically tri-stable, true single-pole-double-throw (SPDT) switches”, J. Micromech. Microeng., vol. 16, pp. 2251–8, 2006CrossRefGoogle Scholar
Pranonsatit, S., Holmes, A. S., Robertson, I. D. and Lucyszyn, S., “Single-pole eight-throw RF MEMS rotary switch”, J. Microelectromech. Syst., vol. 15, no. 6, pp. 1735–44, Dec. 2006CrossRefGoogle Scholar
Daneshmand, M. and Mansour, R. R., “Redundancy RF MEMS multiport switches and switch matrices”, J. Microelectromech. Syst., vol. 16, no. 2, pp. 296–303, Apr. 2007CrossRefGoogle Scholar
Lee, S., Kim, J.-M., Kim, Y.-K. and Kwon, Y., “A single-pole nine-throw antenna switch using radio-frequency microelectromechanical systems technology for broadband multi-mode and multi-band front-ends”, J. Microelectromech. Syst., vol. 18, no. 1, pp. 1–8, 2008Google Scholar
Kim, M., Hacker, J. B., Mihailovich, R. E. and DeNatale, J. F., “A DC-to-40 GHz four-bit RF MEMS true-time delay network”, IEEE Microw. Compon. Lett., vol. 11, no. 2, pp. 56–8, Feb. 2001CrossRefGoogle Scholar
Pillans, B., Eshelman, S., Malczewski, A., Ehmke, J. and Goldsmith, C. L., “Ka-Band RF MEMS phase shifters”, IEEE Microw. Guided Wave Lett., vol. 9, pp. 520–2, 1999CrossRefGoogle Scholar
Brebels, S., Rottenberg, X., Ekkels, P., Mertens, R. P. and De Raedt, W., “45 degrees loaded-line phase shifter using switchable slow wave transmission lines”, ARFTG2007, Honolulu, HI, Jun. 2007Google Scholar
Tummala, R. R., White, G. E., Sundaram, V. and Bhattacharyam, S., “SoP: The microelectronics for the 21st century with integral passive integration”, Adv. Microelectron., vol. 27, pp. 13–19, 2000Google Scholar
Saperstein, B., “Single chip solutions: SoC or SiP”, Electronic Design, pp. 8–10, 2006Google Scholar
Carchon, G., Sun, X.. Posada, G., Linten, D. and Beyne, E., “Thin-film as enabling passive integration technology for RF SoC and SiP”, Proc. ISSCC’05, pp. 398–9, 2005Google Scholar
Lim, K., Pinel, S., Davis, M., Sutono, A., Lee, C.-H., Heo, D., Obatoynbo, A., Laskar, J., Tantzeris, E. M. and Tummala, R., “RF system-on-package (SOP) for wireless communications”, IEEE Microw. Mag., pp. 88–99, 2002Google Scholar
Rogers, J. W. M., Macedo, J. A. and Plett, C., “A completely integrated 1.9-GHz receiver front-end with monolithic image-reject filter and VCO”, IEEE Trans. Microw. Theory Tech., vol. 50, pp. 210–15, 2002CrossRefGoogle Scholar
Sovero, E. A., Mihailovich, R., Deakin, D. S., Higgins, J. A., Yao, J. J., DeNatale, J. F. and Hong, J. H., “Monolithic GaAs PHEMT MMICs integrated with high performance MEMS microrelays”, Proceedings of SBMO/IEEE MTT-S IMOC’99, Rio de Janeiro Brazil, pp. 257–60, 1999
Elbrecht, L., Aigner, R., Lin, C.-I. and Timme, H.-J., “Integration of bulk acoustic wave filters: Concepts and trends”, Proceedings of IEEE MTT-S International Microwave Symposium, Philadelphia, PA, pp. 395–8, Jun. 2004Google Scholar
Dubois1, M.-A., Billard, C., Muller, C., Parat, G. and Vincent, P., “Integration of high-Q BAW resonators and filters above IC”, Proc. ISSCC’05, pp. 392–3 and 606, 2005Google Scholar
Grenier, K., Barber, B. P., Lubecke, V., Zierdt, M., Safar, H., Pons, P. and Gammel, P. L., “Integrated RF MEMS for single chip radio”, Proceedings of Transducers’01 -- EUROSENSORS XV, Munich Germany, pp. 1528–31, Jun. 2001
McNamara, D., “FBAR technology shrinks CDMA handset duplexers”, Microw. RF, pp. 71–9, Sep. 2000Google Scholar
Nguyen, C. T.-C., “Transceiver front-end architectures using vibrating micromechanical signal processors”, Digest of Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 23–32, Sept. 2001Google Scholar
Tilmans, H. A. C., De Raedt, W. and Beyne, E., “MEMS for wireless communications: “from RF MEMS components to RF MEMS-SiP”, J. Micromech. Microeng., vol. 13, no. 4, pp. S139–S163, Jul. 2003CrossRefGoogle Scholar
van Beek, J. T. M., van Delden, M. H. W. M., van Dijken, A., van Eerd, P., Jansman, A. B. M., Kemmeren, A. L. A. M., Rijks, T. G. S. M., Steeneken, P. G., Toonder, J. den, Ulenaers, M. J. E., Dekker, A. den, Lok, P., Pulsford, N., van Straten, F., van Teeffelen, L., De Coster, J. and Puers, R., “High-Q integrated RF passives and RF MEMS on silicon”, MRS2003, Fall Meeting, Boston, MA, Dec. 2003
Carchon, G. J., Jourdain, A., Vendier, O., Schoebel, J. and Tilmans, H. A. C., “Integration of 0/1-Level packaged RF MEMS devices on MCM-D at millimeter-wave frequencies”, IEEE Trans. Adv. Packag., vol. 30, no. 3, pp. 369–76, Aug. 2007CrossRefGoogle Scholar
Carchon, G., Nauwelaers, B., Pieters, P., Vaesen, K., De Raedt, W. and Beyne, E., “Multi-layer thin-film MCM-D for the integration of high performance wireless front-end systems”, Microw. J., vol. 44, pp. 96–110, 2001Google Scholar
Donnay, S., Pieters, P., Vaesen, K., Diels, W., Wambacq, P., De Raedt, W., Beyne, E., Engels, M. and Bolsens, I., “Chip-package codesign of a low power 5-GHz RF front end”, Proc. IEEE, vol. 88, pp. 1583–97, 2000CrossRefGoogle Scholar
Tan, C. S., Gutman, R. J. and Reif, L. R. (Eds.), Wafer Level 3-D ICs Process Technology, Springer Verlag, 2008CrossRef
Garrou, P., Bower, C. and Ramm, P. (Eds.), 3D integration: Technology and Applications, Wiley, 2008
De Moor, P., Ruythooren, W., Soussan, P., Swinnen, B., Baert, K., Van Hoof, C. and Beyne, E., “Recent advances in 3D integration at IMEC”, Mater. Res. Soc. Symp. Proc. vol. 970, p. 3, 2007Google Scholar
Pieters, P. and Beyne, E., “3D wafer level packaging approach towards cost effective low loss high density 3D stacking”, Proc. ICEPT06, 2006Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Packaging
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Packaging
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Packaging
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.010
Available formats
×