Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:49:44.162Z Has data issue: false hasContentIssue false

19 - Computational nonlinear MHD

Published online by Cambridge University Press:  05 March 2013

J. P. Goedbloed
Affiliation:
FOM-Institute for Plasma Physics
Rony Keppens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Stefaan Poedts
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

In Chapter 15, we introduced basic concepts for solving linear MHD problems computationally. In principle, the various options discussed there for discretizing a set of partial differential equations in space and time can all be adopted for simulating nonlinear MHD phenomena. Many suitable combinations of spatial (finite difference, finite element, spectral) and temporal (explicit or implicit) discretizations have successfully been applied in problem-specific contexts. However, the conservation law nature of the ideal nonlinear MHD equations poses additional challenges when discontinuous, shock-dominated evolutions are computed. In this chapter, we pay particular attention to certain variants of “shock-capturing” schemes, which have proven to be of general use for nonlinear hyperbolic equations. We explain fundamental strategies and some of the difficulties encountered upon application of these schemes to the MHD system. This is then again illustrated with examples of their use, including simulations determining the nonlinear evolution of MHD instabilities, as well as advanced computations of astrophysically relevant MHD processes, up to modern solar system space weather models. A brief discussion of alternative algorithmic approaches is included as well, complemented with representative applications.

For simulations involving a hierarchy of temporal scales, one must again handle the time scale problem by some (semi-)implicit time integration method. We limit their discussion to some exemplary treatments in computational nonlinear MHD, focused on resistive mode developments and wave dynamics in externally driven systems. We conclude with an impression of state-of-the-art global simulations of laboratory tokamak plasmas, where even extended MHD models are beginning to be applied.

Type
Chapter
Information
Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas
, pp. 407 - 486
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×