Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: February 2014

11 - Core imaging in adult hydrocephalus

from Section 3 - Diagnosis


This chapter presents the existing data concerning the epidemiology of selected forms of hydrocephalus, concentrating on congenital and infantile hydrocephalus and idiopathic and secondary normal pressure hydrocephalus (NPH). The epidemiology of congenital and infantile hydrocephalus has been explored in several studies. Casmiro et al. based the diagnosis on absence of known causes of secondary NPH, impaired gait, and CT scans showing findings indicative of NPH. The chapter explores the epidemiology of idiopathic normal pressure hydrocephalus (iNPH) in a Norwegian county of 220000 inhabitants, by actively informing the public and professional health workers about the condition, asking for referral of suspected individuals on a broad clinical basis. The lack of universally accepted guidelines for the diagnosis of iNPH, and the lack of powerful tests to predict shunt success, probably also contribute to the relative low rate of diagnosis, and consequently, of surgery.


1. LehnertBE, RahbarH, Relyea-ChewA, et al. Detection of ventricular shunt malfunction in the ED: relative utility of radiography, CT, and nuclear imaging. Emerg Radiol 2011;18(4):299305.
2. GriffeyRT, LedbetterS, KhorasaniR. Yield and utility of radiographic “shunt series” in the evaluation of ventriculo-peritoneal shunt malfunction in adult emergency patients. Emerg Radiol 2007;13(6):30711.
3. DesaiKR, BabbJS, AmodioJB. The utility of the plain radiograph “shunt series” in the evaluation of suspected ventriculoperitoneal shunt failure in pediatric patients. Pediatr Radiol 2007;37(5):4526.
4. MominEN, RecinosPF, CoonAL, RigamontiD. Use of intraoperative venography to guide the distal portion of a ventriculoatrial shunt past an obstruction in the central veins: technical case report. Neurosurgery 2010;66(6 Suppl Operative):3701; discussion 371.
5. SynekV, ReubenJR, Du BoulayGH. Comparing Evans’ index and computerized axial tomography in assessing relationship of ventricular size to brain size. Neurology 1976;26(3):2313.
6. MoriE, IshikawaM, KatoT, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo) 2012;52(11):775809.
7. AmbarkiK, IsraelssonH, WåhlinA, BirganderR, EklundA, MalmJ.Brain ventricular size in healthy elderly: comparison between Evans index and volume measurement. Neurosurgery 2010; 67(1): 94–9.
8. KitagakiH, MoriE, IshiiK, et al. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 1998;19(7):127784.
9. ZorcJJ, KrugmanSD, OgbornJ, BensonJ. Radiographic evaluation for suspected cerebrospinal fluid shunt obstruction. Pediatr Emerg Care 2002;18(5):33740.
10. LenfeldtN, HanssonW, LarssonA, et al. Three-day CSF drainage barely reduces ventricular size in normal pressure hydrocephalus. Neurology 2012;79(3):23742.
11. McNattSA, KimA, HohuanD, KriegerM, McCombJG. Pediatric shunt malfunction without ventricular dilatation. Pediatr Neurosurg 2008;44(2):12832.
12. ChungJJ, YuJS, KimJH, NamSJ, KimMJ. Intraabdominal complications secondary to ventriculoperitoneal shunts: CT findings and review of the literature. AJR Am J Roentgenol 2009;193(5):131117.
13. SmythMD, NarayanP, TubbsRS, et al. Cumulative diagnostic radiation exposure in children with ventriculoperitoneal shunts: a review. Childs Nerv Syst 2008;24(4):4937.
14. MullinsME, LevMH, BoveP, et al. Comparison of image quality between conventional and low-dose nonenhanced head CT. AJNR Am J Neuroradiol 2004;25(4):5338.
15. UdayasankarUK, BraithwaiteK, ArvanitiM, et al. Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR Am J Neuroradiol 2008;29(4):8026.
16. LevyLM, Di ChiroG. MR phase imaging and cerebrospinal fluid flow in the head and spine. Neuroradiology 1990;32(5):399406.
17. EnzmannDR, PelcNJ. Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 1993;14(6):13017; discussion 1309–10.
18. KadowakiC, HaraM, NumotoM, TakeuchiK, SaitoI. Cine magnetic resonance imaging of aqueductal stenosis. Childs Nerv Syst 1995;11(2):10711.
19. Stoquart-El SankariS, LehmannP, Gondry-JouetC, et al. Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis. AJNR Am J Neuroradiol 2009;30(1):20914.
20. BargalloN, OlondoL, GarciaAI, et al. Functional analysis of third ventriculostomy patency by quantification of CSF stroke volume by using cine phase-contrast MR imaging. AJNR Am J Neuroradiol 2005;26(10):251421.
21. DixonGR, FriedmanJA, LuetmerPH, et al. Use of cerebrospinal fluid flow rates measured by phase-contrast MR to predict outcome of ventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus. Mayo Clin Proc 2002;77(6):50914.
22. McConnellKA, ZouKH, ChabrerieAV, BaileyNO, BlackPM. Decreases in ventricular volume correlate with decreases in ventricular pressure in idiopathic normal pressure hydrocephalus patients who experienced clinical improvement after implantation with adjustable valve shunts. Neurosurgery 2004;55(3):58292; discussion 592–3.
23. Di ChiroG, GroveAS, Jr. Evaluation of surgical and spontaneous cerebrospinal fluid shunts by isotope scanning. J Neurosurg 1966;24(4):7438.
24. SavoiardoM, SoleroCL, PasseriniA, MigliavaccaF. Determination of cerebrospinal fluid shunt function with water-soluble contrast medium. J Neurosurg 1978;49(3):398407.
25. KharkarS, ShuckJ, KapoorS, et al. Radionuclide shunt patency study for evaluation of suspected ventriculoperitoneal shunt malfunction in adults with normal pressure hydrocephalus. Neurosurgery 2009;64(5):90916; discussion 916–18.