Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: February 2014

Section 1 - Basic sciences

References

1. HallGA.Medical Physiology, 11th edn. Elsevier; 2006.
2. KohnMI, TannaNK, HermanGT, et al. Analysis of brain and cerebrospinal fluid volumes with MR imaging. Part I. Methods, reliability, and validation. Radiology 1991;178(1):115–22.
3. RedzicZB, SegalMB.The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 2004;56(12):1695–716.
4. KimelbergHK.Water homeostasis in the brain: basic concepts. Neuroscience 2004;129(4):851–60.
5. RedzicZB, PrestonJE, DuncanJA, ChodobskiA, Szmydynger-ChodobskaJ.The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005;71:1–52.
6. ChodobskiA, Szmydynger-ChodobskaJ.Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 2001;52(1):65–82.
7. OldendorfWH, DavsonH.Brain extracellular space and the sink action of cerebrospinal fluid. Measurement of rabbit brain extracellular space using sucrose labeled with carbon 14. Arch Neurol 1967;17(2):196–205.
8. JohansonCE, StopaEG, McMillanPN.The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011;686:101–31.
9. PapadeaC, SchlosserRJ.Rapid method for beta2-transferrin in cerebrospinal fluid leakage using an automated immunofixation electrophoresis system. Clin Chem 2005;51(2):464–70.
10. SlomanAJ, KellyRH.Transferrin allelic variants may cause false positives in the detection of cerebrospinal fluid fistulae. Clin Chem 1993;39(7):1444–5.
11. SmithDE, JohansonCE, KeepRF.Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56(12):1765–91.
12. RaybaudC, GreenbergG. Imaging (normal and abnormal). In: MallucciC, SgourosS. (Eds.) Cerebrospinal Fluid Disorders. Informa Healthcare; 2010.
13. LongattiP, FiorindiA, PerinA, MartinuzziA.Endoscopic anatomy of the cerebral aqueduct. Neurosurgery 2007;61(3 Suppl):1–5; discussion 5–6.
14. RedzicZB, SegalMB.The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 2004;56(12):1695–716.
15. BrownPD, DaviesSL, SpeakeT, MillarID.Molecular mechanisms of cerebrospinal fluid production. Neuroscience 2004;129(4):957–70.
16. Amiry-MoghaddamM, OttersenOP.The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4(12):991–1001.
17. GunnarsonE, ZeleninaM, AperiaA.Regulation of brain aquaporins. Neuroscience 2004;129(4):947–55.
18. McCarthyKD, ReedDJ.The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. J Pharmacol Exp Ther 1974;189(1):194–201.
19. EmerichDF, SkinnerSJ, BorlonganCV, et al. The choroid plexus in the rise, fall and repair of the brain. Bioessays 2005;27(3):262–74.
20. KusuharaH, SugiyamaY.Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56(12):1741–63.
21. CserrHF.Physiology of the choroid plexus. Physiol Rev 1971;51(2):273–311.
22. BrodbeltA, StoodleyM.CSF pathways: a review. Br J Neurosurg 2007;21(5):510–20.
23. Del BigioMR.The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 1995;14(1):1–13.
24. WittkowskiW.Tanycytes and pituicytes: morphological and functional aspects of neuroglial interaction. Microsc Res Tech 1998;41(1):29–42.
25. RodriguezEM, BlázquezJL, PastorFE, et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol, 2005;247:89–164.
26. LeonhardtH, DesagaU.Recent observations on ependyma and subependymal basement membranes. Acta Neurochir (Wien) 1975;31(3–4):153–9.
27. StoodleyMA, BrownSA, BrownCJ, JonesNR.Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg 1997;86(4):686–93.
28. Henry-FeugeasMC, Idy-PerettiI, BalédentO, et al. Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn Reson Imaging 2000;18(4):387–95.
29. HallP, TurnerM, AichingerS, BendickP, CampbellR.Experimental syringomyelia: the relationship between intraventricular and intrasyrinx pressures. J Neurosurg 1980;52(6):812–17.
30. Williams, B.On the pathogenesis of syringomyelia: a review. J R Soc Med 1980;73(11):798–806.
31. BanizsB, PikeMM, MillicanCL, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 2005;132(23):5329–39.
32. AlcoladoR, WellerRO, ParrishEP, GarrodD.The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 1988;4(1):1–17.
33. HainesDE.On the question of a subdural space. Anat Rec 1991;230(1):3–21.
34. LiJ, McAllisterJP 2nd, ShenY, et al. Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Exp Neurol 2008;211(2):351–61.
35. ZhangET, InmanCB, WellerRO.Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 1990;170:111–23.
36. IchimuraT, FraserPA, CserrHF.Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 1991;545(1–2):103–13.
37. StoodleyMA, JonesNR, BrownCJ.Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res 1996;707(2):155–64.
38. MilhoratTH, KotzenRM, AnzilAP.Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 1994;80(4):716–22.
39. YasuiK, HashizumeY, YoshidaM, KameyamaT, SobeuG.Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol 1999;97(3):253–9.
40. GreitzD, GreitzT, HindmarshT.A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 1997;86(2):125–32.
41. AgreP, NielsenS, OttersenOP.Towards a molecular understanding of water homeostasis in the brain. Neuroscience 2004;129(4):849–50.
42. VerkmanAS.Aquaporins at a glance. J Cell Sci 2011;124(Pt 13):2107–12.
43. NielsenS, NagelhusEA, Amiry-MoghaddamM, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997;17(1):171–80.
44. FilippidisAS, KalaniMY, RekateHL.Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 2011;27(1):27–33.
45. OshioK, WatanabeH, SongY, VerkmanAS, ManleyGT.Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 2005;19(1):76–8.
46. BlochO, AugusteKI, ManleyGT, VerkmanAS.Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cerebral Blood Flow Metab 2006;26(12):1527–37.
47. FrömterE, DiamondJ.Route of passive ion permeation in epithelia. Nat New Biol 1972;235(53):9–13.
48. UssingHH, ZerahnK.Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951;23(2–3):110–27.
49. FilippidisA, ZarogiannisS, IoannouM, et al. Transmembrane resistance and histology of isolated sheep leptomeninges. Neurol Res 2010;32(2):205–8.
50. DamkierHH, BrownPD, PraetoriusJ.Epithelial pathways in choroid plexus electrolyte transport. Physiology (Bethesda) 2010;25(4):239–49.
51. PollayM, CurlF.Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 1967;213(4):1031–8.
52. SegalMB, PollayM.The secretion of cerebrospinal fluid. Exp Eye Res 1977;25(Suppl):127–48.
53. HatzoglouCH, GourgoulianisKI, MolyvdasPA.Effects of SNP, ouabain, and amiloride on electrical potential profile of isolated sheep pleura. J Appl Physiol 2001;90(4):1565–9.
54. ZarogiannisS, GourgoulianisK, MolyvdasPA, HatzoglouC.Existence of Na(+)-K(+) ATPase in sheep visceral and parietal pleura. Respir Physiol Neurobiol 2008;164(3):289; author reply 290.
55. MilhoratTH, HammockMK, FenstermacherJD, LevinVA.Cerebrospinal fluid production by the choroid plexus and brain. Science 1971;173(3994):330–2.
56. FilippidisAS, ZarogiannisSG, IoannouM, et al. Permeability of the arachnoid and pia mater. The role of ion channels in the leptomeningeal physiology. Childs Nerv Syst 2012;28(4):533–40.
57. SatoO, TakeiF, YamadaS.Hydrocephalus: is impaired cerebrospinal fluid circulation only one problem involved?Childs Nerv Syst 1994;10(3):151–5.
58. PollayM.Overview of the CSF dual outflow system. Acta Neurochir Suppl 2012;113:47–50.
59. OreskovicD, KlaricaM.Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol 2011;94(3):238–58.
60. TripathiBJ, TripathiRC.Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 1974;239(1):195–206.
61. WeedLH.Studies on cerebro-spinal fluid. No. III: The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 1914;31(1):51–91.
62. MortensenOA, SullivanWE. Cerebrospinal fluid and the cervical lymph nodes. Anat Rec 1933;56:356–63.
63. CserrHF, Harling-BergCJ, KnopfPM.Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992;2(4):269–76.
64. JohnstonM.The importance of lymphatics in cerebrospinal fluid transport. Lymphat Res Biol 2003;1(1):41–4; discussion 45.
65. BoultonM, FlessnerM, ArmstrongD, HayJ, JohnstonM.Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 1998;274(1 Pt 2):R88–96.
66. BoultonM, FlessnerM, ArmstrongD, et al. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 1999;276(3 Pt 2):R818–23.
67. NagraG, KohL, ZakharovA, ArmstrongD, JohnstonM.Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 2006;291(5):R1383–9.
68. MollanjiR, Bozanovic-SosicR, ZakharovA, MakarianL, JohnstonMG.Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 2002;282(6):R1593–9.
69. EdsbaggeM, StarckG, ZetterbergH, ZiegelitzD, WikkelsoC.Spinal cerebrospinal fluid volume in healthy elderly individuals. Clin Anat 2011;24(6):733–40.
70. MinKJ, YoonSH, KangJK.New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy. Med Hypotheses 2011;76(6):884–6.
71. GreitzD, WirestamR, FranckA, et al. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 1992;34(5):370–80.
72. GreitzD.Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 2004;27(3):145–65; discussion 166–7.
73. BalédentO, Henry-FeugeasMC, Idy-PerettiI.Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 2001;36(7):368–77.
74. LeeHS, YoonSH.Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: new understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow. Med Hypotheses 2009;72(2):174–7.

References

1. RapoportSI. Blood-Brain Barrier in Physiology and Medicine. New York: Raven Press; 1976.
2. CaoY, BrownSL, KnightRA, FenstermacherJD, EwingJR. Effect of intravascular-to-extravascular water exchange on the determination of blood-to-tissue transfer constant by magnetic resonance imaging. Magn Reson Med 2005;53(2):282–93.
3. JohnstonM, ZakharovA, PapaiconomouC, SalmasiG, ArmstrongD.Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 2004;1(1):2.
4. FoldiM.Prelymphatic-lymphatic drainage of the brain. Am Heart J 1977;93(1):121–4.
5. JohansonCE, DuncanJA, 3rd, KlingePM, et al. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008;5:10.
6. SchillerF.The cerebral ventricles. From soul to sink. Arch Neurol 1997;54(9):1158–62.
7. RussellDS. Observations on the pathology of hydrocephalus. Med Res Council Special Report Ser 1949;265:1–138.
8. MilhoratTH. Hydrocephalus and the Cerebrospinal Fluid. Baltimore: Williams & Wilkins; 1972.
9. Del BigioMR.Neuropathological changes caused by hydrocephalus. Acta Neuropathol (Berl) 1993;85(6):573–85.
10. Del BigioMR. Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 2001;12(4):639–49.
11. Del BigioMR. Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg 2001;34(4):172–81.
12. Del BigioMR. Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 2004;14(3):317–24.
13. Del BigioMR. Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 2010;16(1):16–22.
14. McAllisterJP, II, ChovanP. Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin N Am 1998;9(1):73–93.
15. McAllisterJP, 2nd. Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 2012;17(5):285–94.
16. AkaiK, UchigasakiS, TanakaU, KomatsuA. Normal pressure hydrocephalus. Neuropathological study. Acta Pathol Jpn 1987;37:97–110.
17. BallMJ. Neurofibrillary tangles in the dementia of “normal pressure” hydrocephalus. Can J Neurol Sci 1976;3(4):227–35.
18. DeLandFH, JamesAE, Jr., LaddDJ, KonigsmarkBW. Normal pressure hydrocephalus: a histologic study. Am J Clin Pathol 1972;58(1):58–63.
19. Di RoccoC, Di TrapaniG, MairaG, et al. Anatomo-clinical correlations in normotensive hydrocephalus. Reports on three cases. J Neurol Sci 1977;33:437–52.
20. VessalK, SperberEE, JamesAE. Chronic communicating hydrocephalus with normal CSF pressures: a cisternographic-pathologic correlation. Ann Radiol (Paris) 1974;17:785–93.
21. KotoA, RosenbergG, ZingesserLH, HoroupianD, KatzmanR.Syndrome of normal pressure hydrocephalus: possible relation to hypertensive and arteriosclerotic vasculopathy. J Neurol Neurosurg Psychiatry 1977;40(1):73–9.
22. CabralD, BeachTG, VeddersL, et al. Frequency of Alzheimer’s disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimers Dement 2011;7(5):509–13.
23. LeinonenV, KoivistoAM, SavolainenS, et al. Post-mortem findings in 10 patients with presumed normal pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 2012;38:72–86.
24. DerouesneC, GrayF, EscourolleR, CastaigneP. ‘Expanding cerebral lacunae’ in a hypertensive patient with normal pressure hydrocephalus. Neuropathol Appl Neurobiol 1987;13:309–20.
25. EarnestMP, FahnS, KarpJH, RowlandLP. Normal pressure hydrocephalus and hypertensive cerebrovascular disease. Arch Neurol 1974;31(4):262–6.
26. LorenzoAV, BresnanMJ, BarlowCF. Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch Neurol 1974;30(5):387–93.
27. BallMJ, VisCL. Relationship of granulovacuolar degeneration in hippocampal neurones to aging and to dementia in normal-pressure hydrocephalics. J Gerontol 1978;33(6):815–24.
28. Del BigioMR, CardosoER, HallidayWC. Neuropathological changes in chronic adult hydrocephalus: cortical biopsies and autopsy findings. Can J Neurol Sci 1997;24(2):121–6.
29. JellingerK.Neuropathological aspects of dementias resulting from abnormal blood and cerebrospinal fluid dynamics. Acta Neurol Belg 1976;76(2):83–102.
30. HeinzER, DavisDO, KarpHR. Abnormal isotope cisternography in symptomatic occult hydrocephalus. A correlative isotopic-neuroradiological study in 130 subjects. Radiology 1970;95(1):109–20.
31. SohnRS, SiegelBA, GadoM, TorackRM. Alzheimer’s disease with abnormal cerebrospinal fluid flow. Neurology 1973;23(10):1058–65.
32. SypertGW, LeffmanH, OjemannGA. Occult normal pressure hydrocephalus manifested by parkinsonism-dementia complex. Neurology 1973;23(3):234–8.
33. CoblentzJM, MattisS, ZingesserLH, et al. Presenile dementia. Clinical aspects and evaluation of cerebrospinal fluid dynamics. Arch Neurol 1973;29(5):299–308.
34. NewtonH, PickardJD, WellerRO. Normal pressure hydrocephalus and cerebrovascular disease: findings of postmortem. J Neurol Neurosurg Psychiatry 1989;52(6):804.
35. EsiriMM, RosenbergGA. Hydrocephalus and dementia. In: EsiriMM, LeeVM-Y, TrojanowskiJQ (Eds.) The Neuropathology of Dementia. Cambridge University Press; 2004: 442–56.
36. BrusaG, PiccardoA, PizioN, GambiniC. Anatomopathological study of dementia syndrome linked with an abnormal cerebrospinal fluid flow. Report of literature and personal observations. Pathologica 1991;83(1085):351–8.
37. ConstantinidisJ, YanniotisG, de AjuriaguerraJ. Syndrome dementiel senile avec dilatation des ventricules cerebraux sans autres lesions (a propos de 18 observations anatomo-cliniques). Schweiz Arch Neurol Neurochir Psychiatr 1977;121(2):229–48.
38. CrowellRM, TewJM, Jr., MarkVH. Aggressive dementia associated with normal pressure hydrocephalus. Report of two unusual cases. Neurology 1973;23(5):461–4.
39. Ribadeau-DumasJL, RicouP, VerdureL, RondotP, EscourolleR. Etude anatomique d’un cas d’hydrocephalie a pression normale. Neurochirurgie 1976;22:138–46.
40. VanderkelenB, BrihayeJ, Flament-DurandJ.Constatations anatomo-pathologiques dans un cas d’hydrocephalie normotensive. Acta Neurol Belg 1975;75:279–87.
41. RelkinN, MarmarouA, KlingeP, BergsneiderM, BlackPM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57(3 Suppl):S4–S16.
42. MassicotteEM, Del BigioMR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg 1999;91(1):80–4.
43. BellurSN, ChandraV, McDonaldLW. Arachnoidal cell hyperplasia. Its relationship to aging and chronic renal failure. Arch Pathol Lab Med 1980;104(8):414–16.
44. BechRA, JuhlerM, WaldemarG, KlinkenL, GjerrisF. Frontal brain and leptomeningeal biopsy specimens correlated with cerebrospinal fluid outflow resistance and B wave activity in patients suspected of normal pressure hydrocephalus. Neurosurgery 1997;40:497–502.
45. BradleyWG, Jr., BahlG, AlksneJF. Idiopathic normal pressure hydrocephalus may be a “two hit” disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. J Magn Reson Imaging 2006;24(4):747–55.
46. KalariaRN. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev 2010;68(Suppl 2):S74–S87.
47. RedzicZB, PrestonJE, DuncanJA, ChodobskiA, Szmydynger-ChodobskaJ. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005;71:1–52.
48. KrefftTA, Graff-RadfordNR, LucasJA, MortimerJA. Normal pressure hydrocephalus and large head size. Alzheimer Dis Assoc Disord 2004;18(1):35–7.
49. WilsonRK, WilliamsMA. Evidence that congenital hydrocephalus is a precursor to idiopathic normal pressure hydrocephalus in only a subset of patients. J Neurol Neurosurg Psychiatry 2007;78(5):508–11.
50. Di RoccoC, PettorossiVE, CaldarelliM, MancinelliR, VelardiF. Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 1978;59(1):40–52.
51. ShulyakovAV, BuistRJ, Del BigioMR. Intracranial biomechanics of acute experimental hydrocephalus in live rats. Neurosurgery 2012;71(5):1032–40.
52. BatemanGA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology. 2002;44(9):740–8.
53. Del BigioMR. Ependymal cells: biology and pathology. Acta Neuropathol 2010;119(1):55–73.
54. ChangCC, AsadaH, MimuraT, SuzukiS. A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg 2009;111(3):610–17.
55. Del BigioMR, BruniJE. Changes in periventricular vasculature of rabbit brain following induction of hydrocephalus and after shunting. J Neurosurg 1988;69(1):115–20.
56. LucianoMG, SkarupaDJ, BoothAM, et al. Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metab 2001;21(3):285–94.
57. ItohY, SuzukiN. Control of brain capillary blood flow. J Cereb Blood Flow Metab 2012;32(7):1167–76.
58. Del BigioMR. Calcium-mediated proteolytic damage in white matter of hydrocephalic rats?J Neuropathol Exp Neurol 2000;59(11):946–54.
59. Del BigioMR, KhanOH, da Silva LopesL, JulietPA. Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 2012;71(4):274–88.
60. Del BigioMR. Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery. 1989;25(3):416–23.
61. KruegerRC. Use of a novel double-sandwich enzyme-linked immunosorbent assay method for assaying chondroitin sulfate proteoglycans that bear 3-nitrotyrosine core protein modifications, a previously unrecognized proteoglycan modification in hydrocephalus. Anal Biochem 2004;325(1):52–61.
62. HattoriT, SatoR, AokiS, YuasaT, MizusawaH. Different patterns of fornix damage in idiopathic normal pressure hydrocephalus and Alzheimer disease. Am J Neuroradiol 2012;33(2):274–9.
63. Del BigioMR, WilsonMJ, EnnoT.Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 2003;53(3):337–46.
64. Graff-RadfordNR, GoderskyJC. Idiopathic normal pressure hydrocephalus and systemic hypertension. Neurology 1987;37:868–71.
65. KraussJK, RegelJP, VachW, et al. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke 1996;27:24–9.
66. BoonAJ, TansJT, DelwelEJ, et al. Dutch Normal-Pressure Hydrocephalus Study: the role of cerebrovascular disease. J Neurosurg 1999;90(2):221–6.
67. JacobsL. Diabetes mellitus in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 1977;40(4):331–5.
68. TullbergM, HultinL, EkholmS, et al. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol Scand 2002;105(6):417–26.
69. TisellM, TullbergM, HellströmP, et al. Shunt surgery in patients with hydrocephalus and white matter changes. J Neurosurg 2011;114(5):1432–8.
70. RitterS, DinhTT. Progressive postnatal dilation of brain ventricles in spontaneously hypertensive rats. Brain Res 1986;370(2):327–32.
71. TarnarisA, WatkinsLD, KitchenND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 2006;3:11.
72. TarnarisA, KitchenND, WatkinsLD. Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. J Neurosurg 2009;110(5):837–51.
73. SykovaE, FialaJ, AntonovaT, VorisekI. Extracellular space volume changes and diffusion barriers in rats with kaolin-induced and inherited hydrocephalus. Eur J Pediatr Surg 2001;11(Suppl 1):S34–7.
74. ShoesmithCL, BuistR, Del BigioMR. Magnetic resonance imaging study of extracellular fluid tracer movement in brains of immature rats with hydrocephalus. Neurol Res 2000;22(1):111–16.
75. McLoneDG, BondareffW, RaimondiAJ. Brain edema in the hydrocephalic hy-3 mouse: submicroscopic morphology. J Neuropathol Exp Neurol 1971;30:627–37.
76. Del BigioMR, EnnoTL. Effect of hydrocephalus on rat brain extracellular compartment. Cerebrospinal Fluid Res 2008;5(1):12.
77. Del BigioMR, BruniJE. Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediatr Neurosci 1987;13(2):72–7.
78. FoncinJF, RedondoA, LeBeauJ. Le cortex cérébral des malades atteints d’hydrocéphalie à pression normale: étude ultrastructurale. Acta Neuropathol 1976;34:353–7.
79. NgSE, LowAM, TangKK, ChanYH, KwokRK. Value of quantitative MRI biomarkers (Evans’ index, aqueductal flow rate, and apparent diffusion coefficient) in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2009;30(4):708–15.
80. LeinonenV, KoivistoAM, AlafuzoffI, et al. Cortical brain biopsy in long-term prognostication of 468 patients with possible normal pressure hydrocephalus. Neurodegener Dis 2012;10:166–9.
81. SeppalaTT, NergO, KoivistoAM, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 2012;78(20):1568–75.
82. HamiltonR, PatelS, LeeEB, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol 2010;68(4):535–40.
83. KlingePM, SamiiA, NiesckenS, BrinkerT, Silverberg GD. Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. Neuroreport 2006;17(6):657–60.
84. SilverbergGD, MillerMC, MachanJT, et al. Amyloid and tau accumulate in the brains of aged hydrocephalic rats. Brain Res 2010;1317:286–96.
85. WellerRO. Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 1998;57(10):885–94.
86. SilverbergGD, MayoM, SaulT, et al. Continuous CSF drainage in AD: results of a double-blind, randomized, placebo-controlled study. Neurology 2008;71(3):202–9.
87. MorishitaT, FooteKD, OkunMS. INPH and Parkinson disease: differentiation by levodopa response. Nat Rev Neurol 2010;6(1):52–6.
88. AkiguchiI, IshiiM, WatanabeY, et al. Shunt-responsive parkinsonism and reversible white matter lesions in patients with idiopathic NPH. J Neurol 2008;255(9):1392–9.
89. RacetteBA, EsperGJ, AntenorJ, et al. Pathophysiology of parkinsonism due to hydrocephalus. J Neurol Neurosurg Psychiatry 2004;75(11):1617–19.
90. SmithMC. The recognition and prevention of artefacts of the Marchi method. J Neurol Neurosurg Psychiatry 1956;19:74–83.
91. SkjoldingAD, HolstAV, BroholmH, LaursenH, JuhlerM. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol 2012, Apr 13; doi: 10.1111/j.1365-2990.2012.01275.x.
92. StolzeH, Kuhtz-BuschbeckJP, DrückeH, et al. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001;70(3):289–97.
93. HiraokaK, YamasakiH, TakagiM, et al. Is the midbrain involved in the manifestation of gait disturbance in idiopathic normal-pressure hydrocephalus?J Neurol 2011;258(5):820–5.
94. GriffithsD, TadicSD. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn 2008;27(6):466–74.
95. DonnetA, SchmittA, DufourH, GiorgiR, GrisoliF. Differential patterns of cognitive impairment in patients with aqueductal stenosis and normal pressure hydrocephalus. Acta Neurochir (Wien) 2004;146(12):1301–18.
96. ShiraiT, IshiiK. Postnatal changes of HRP-labeled corticospinal neurons in congenital hydrocephalic rats (HTX). In: MatsumotoS, TamakiN (Eds.) Hydrocephalus Pathogenesis and Treatment. Tokyo: Springer-Verlag; 1991: 36–45.
97. Del BigioMR, da SilvaMC, DrakeJM, TuorUI. Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci 1994;21:299–305.
98. DingY, McAllisterJP, II, YaoB, YanN, CanadyAI. Neuron tolerance during hydrocephalus. Neuroscience 2001;106(4):659–67.
99. SavolainenS, LaaksoMP, PaljarviL, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. Am J Neuroradiol 2000;21(2):409–14.
100. Del BigioMR, BruniJE, VriendJP. Monoamine neurotransmitters and their metabolites in the mature rabbit brain following induction of hydrocephalus. Neurochem Res 1998;23(11):1379–86.
101. OuchiY, NakayamaT, KannoT, et al. In vivo presynaptic and postsynaptic striatal dopamine functions in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2007;27(4):803–10.
102. NakayamaT, OuchiY, YoshikawaE, et al. Striatal D2 receptor availability after shunting in idiopathic normal pressure hydrocephalus. J Nucl Med 2007;48(12):1981–6.

References

1. RussellWMS, BurchRL. The Principles of Humane Experimental Technique. London: Methuen; 1959.
2. MancioccoA, ChiarottiF, VitaleA, et al. The application of Russell and Burch 3R principle in rodent models of neurodegenerative disease: the case of Parkinson’s disease. Neurosci Biobehav Rev 2009;33(1):1832.
3. WorkmanP, AboagyeEO, BalkwillF, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010;102(11):155577.
4. FestingS. On the necessity for animal experimentation. Bioessay 2008;30(1):945; author reply 6–7.
5. MuschTI, CarrollRG, JustA, LanePH, TalmanWT. A broader view of animal research. Br Med J 2007;334(7588):274.
6. TkacsNC, ThompsonHJ. From bedside to bench and back again: research issues in animal models of human disease. Biol Res Nurs 2006;8(1):7888.
7. BergsneiderM, EgnorMR, JohnstonM, et al. What we don’t (but should) know about hydrocephalus. J Neurosurg 2006;104 (3 Suppl):15759.
8. ThrusfieldM.The application of epidemiological techniques to contemporary veterinary problems. Br Vet J 1988;144(5):45569.
9. KardelT.On a calf with hydrocephalus. A scientific letter dated June 1669 to Ferdinand II, Grand Duke of Tuscany. By Niels Stensen, Royal Anatomist. J Hist Neurosci 1993;2(3):179202.
10. DriverCJ, ChandlerK, WalmsleyG, ShihabN, VolkHA. The association between Chiari-like malformation, ventriculomegaly and seizures in cavalier King Charles spaniels. Vet J 2013;195(2):235–7.
11. VuralSA, BesaltiO, IlhanF, OzakA, HaligurM. Ventricular ependymoma in a German shepherd dog. Veterinary J 2006;172:1857.
12. BestbierME, BlundenAS, AbramsonC, VondenbuschT. Unusual intraventricular neoplasm in a cat. Research in Vet Sci 2003;74(Suppl 1):10.
13. KellerKA, GuzmanDS, MuthuswamyA, et al. Hydrocephalus in a yellow-headed Amazon parrot (Amazona ochrocephala oratrix). J Avian Med Surg 2011;25(3):21624.
14. ThomasWS. Experimental hydrocephalus. J Exp Med 1914;19:10620.
15. JamesAE, FlorWJ, NovakGR, et al. Experimental hydrocephalus. Exp Eye Res 1977;25(Suppl):43559.
16. ParkJH, ParkYS, SukJS, et al. Cerebrospinal fluid pathways from cisterns to ventricles in N-butyl cyanoacrylate-induced hydrocephalic rats. J Neurosurg Pediatr 2011;8(6):64046.
17. DixonWE, HellerH. Experimentelle Hypertonie durch Erhohung des intrakraniellen Druckes. Arch Exp Pathol Pharmacol 1932;166:26575.
18. McAllisterJP. Experimental hydrocephalus. In: Winn HR (Ed.) Youman’s Textbook of Neurological Surgery. New York: Elsevier; 2011: 20028.
19. McAllisterJP. Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 2012;17(5):285–94.
20. WagshulME, McAllisterJP, RashidS, et al. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Exp Neurol 2009;218(1):3340.
21. AquilinaK, ChakkarapaniE, LoveS, ThoresenM. Neonatal rat model of intraventricular haemorrhage and post-haemorrhagic ventricular dilatation with long-term survival into adulthood. Neuropathol Appl Neurobiol 2011;37(2):15665.
22. KrishnamurthyS, LiJ, SchultzL, JenrowKA. Increased CSF osmolarity reversibly induces hydrocephalus in the normal rat brain. Fluids Barriers CNS. 2012;9(1):13.
23. HauerbergJ, JuhlerM. Cerebral blood flow autoregulation in acute intracranial hypertension. J Cereb Blood Flow Metab 1994;14:51925.
24. JonesHC, ChenGF, YehiaBR, et al. Single and multiple congenic strains for hydrocephalus in the H-Tx rat. Mamm Genome 2005;16(4):25161.
25. KohnDF, ChinookoswongN, ChouSM. A new model of congenital hydrocephalus in the rat. Acta Neuropathol 1981;54:21118.
26. JohansonC, Del BigioMR, KinsmanS, et al. New models for analysing hydrocephalus and disorders of CSF volume transmission. Br J Neurosurg 2001;15:2813.
27. MillerJM, KumarR, McAllisterJP, KrauseGS. Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res 2006;1075:3647.
28. ZhangJ, WilliamsMA, RigamontiD. Genetics of human hydrocephalus. J Neurol 2006;253:125566.
29. CrewsL, Wyss-CorayT, MasliahE. Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 2004;14:31216.
30. VerkmanAS, YangB, SongY, ManleyGT, MaT. Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp Physiol 2000;85(Supp1):23341.
31. BlochO, AugusteKI, ManleyGT, Verkman AS. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 2006;26:152737.
32. WatanabeM, MiyajimaM, NakajimaM, et al. Expression analysis of high mobility group box-1 protein (HMGB-1) in the cerebral cortex, hippocampus, and cerebellum of the congenital hydrocephalus (H-Tx) rat. Acta NeurochirSuppl 2012; 113:916.
33. RammlingM, MadanM, PaulL, BehnamB, PattisapuJV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res 2008;5:15.
34. CainsS, ShepherdA, NabiuniM, Owen-LynchPJ, MiyanJ. Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol 2009;68(4):40416.
35. ChenX, HuangX, LiB, et al. Changes in neural dendrites and synapses in rat somatosensory cortex following neonatal post-hemorrhagic hydrocephalus. Brain Res Bull 2010;83(1–2):448.
36. XuH, ZhangSL, TanGW, et al. Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus. Neuroscience 2012;218:31725.
37. LekicT, ManaenkoA, RollandW, et al. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol 2012;236(1):6978.
38. SimardPF, TosunC, MelnichenkoL, et al. Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl Stroke Res 2011;2(2):22731.
39. DerenKE, ForsythJ, AbdullahO, et al. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus. Cerebrospinal Fluid Res 2009;6:4.
40. McAllisterJP 2nd, MillerJM. Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 2010;7:7.
41. NonakaY, MiyajimaM, OginoI, NakajimaM, AraiH. Analysis of neuronal cell death in the cerebral cortex of H-Tx rats with compensated hydrocephalus. J Neurosurg Pediatr 2008;1(1):6874.
42. MillerJM, McAllisterJP 2nd. Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 2007;4:5.
43. ChuSH, FengDF, MaYB, et al. Expression of HGF and VEGF in the cerebral tissue of adult rats with chronic hydrocephalus after subarachnoid hemorrhage. Mol Med Rep 2011;4(5):78591.
44. LiX, MiyajimaM, AraiH. Analysis of TGF-beta2 and TGF-beta3 expression in the hydrocephalic H-Tx rat brain. Childs Nerv Syst 2005;21(1):328.
45. SkjoldingAD, HolstAV, BroholmH, LaursenH, JuhlerM. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol 2012, Apr 13; doi: 10.1111/j.1365–2990.2012.01275.x.
46. SkjoldingAD, RowlandIJ, SøgaardLV, et al. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res 2010;7:20.
47. ShulyakovAV, CenkowskiSS, BuistRJ, Del BigioMR. Age-dependence of intracranial viscoelastic properties in living rats. J Mech Behav Biomed Mater 2011;4(3):48497.
48. YuanW, McAllisterJP 2nd, LindquistDM, et al. Diffusion tensor imaging of white matter injury in a rat model of infantile hydrocephalus. Childs Nerv Syst 2012;28(1):4754.
49. SilverbergGD, MillerMC, MachanJT, et al. Amyloid and tau accumulate in the brains of aged hydrocephalic rats. Brain Res 2010;1317:28696.
50. KondziellaD, SonnewaldU, TullbergM, WikklesøC. Brain metabolism in adult chronic hydrocephalus. J Neurochem 2008;106:151524.

References

1. ChiJH, FullertonHJ, GuptaN. Time trends and demographics of deaths from congenital hydrocephalus in children in the United States: National Center for Health Statistics data, 1979 to 1998. J Neurosurg 2005;103:113–18.
2. Van LandinghamM, NguyenTV, RobertsA, ParentAD, ZhangJ. Risk factors of congenital hydrocephalus: a 10 year retrospective study. J Neurol Neurosurg Psychiatry 2009;80:213–17.
3. Schrander-StumpelC, FrynsJP. Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur JPediatr 1998;157:355–62.
4. VaradiV, TothZ, KorodiI, PappZ. [Risk of heterogeneity and recurrence in congenital hydrocephalus (ventriculomegaly)]. Orvosi hetilap 1987;128:1349–52, 1356.
5. VaradiV, TothZ, TorokO, PappZ. Heterogeneity and recurrence risk for congenital hydrocephalus (ventriculomegaly): a prospective study. Am J Med Genet 1988;29:305–10.
6. BearerCF. L1 cell adhesion molecule signal cascades: targets for ethanol developmental neurotoxicity. Neurotoxicology 2001;22:625–33.
7. AoladHM, InouyeM, HayasakaS, DarmantoW, MurataY. Congenital hydrocephalus caused by exposure to low level x-radiation at early gestational stage in mice. Uchu Seibutsu Kagaku 1998;12:256–7.
8. AoladHM, InouyeM, DarmantoW, HayasakaS, MurataY. Hydrocephalus in mice following x-irradiation at early gestational stage: possibly due to persistent deceleration of cell proliferation. J Radiation Res 2000;41:213–26.
9. JohnsonRT, JohnsonKP. Hydrocephalus following viral infection: the pathology of aqueductal stenosis developing after experimental mumps virus infection. J Neuropathol Exp Neurol 1968;27:591–606.
10. AdeloyeA, WarkanyJ. Experimental congenital hydrocephalus. A review with special consideration of hydrocephalus produced by zinc deficiency. Child’s Brain 1976;2:325–60.
11. KazyZ, PuhoE, CzeizelAE. Teratogenic potential of vaginal metronidazole treatment during pregnancy. Eur J Obstet Gynecol Reprod Biol 2005;123:174–8.
12. OrioliIM, CastillaEE. Epidemiological assessment of misoprostol teratogenicity. BJOG 2000;107:519–23.
13. HaverkampF, WolfleJ, AretzM, et al. Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur J Pediatr 1999;158:474–8.
14. ZhangJ, WilliamsMJ, RigamontiD.Genetics of human hydrocephalus. J Neurol 2006; 253:1255–66.
15. ShannonMW, NadlerHL. X-linked hydrocephalus. J Med Genet 1968;5:326–8.
16. JansenJ. Sex-linked hydrocephalus. Dev Med Child Neurol 1975;17:633–40.
17. HallidayJ, ChowCW, WallaceD, DanksDM. X linked hydrocephalus: a survey of a 20 year period in Victoria, Australia. J Med Genet 1986;23:23–31.
18. RosenthalA, JouetM, KenwrickS. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 1992;2:107–12.
19. VanlieferinghenP, ChazalJ, FrancannetC, MalpuechG, StormeB. [Congenital stenosis of the aqueduct of Sylvius transmitted in an autosomal recessive mode (5 cases in 2 families)]. J Genet Hum 1987;35:251–8.
20. ChowCW, McKelviePA, AndersonRM, et al. Autosomal recessive hydrocephalus with third ventricle obstruction. Am J Med Genet 1990;35:310–13.
21. Barros-NunesP, RivasF. Autosomal recessive congenital stenosis of aqueduct of Sylvius. Genet Couns 1993;4:19–23.
22. ZlotogoraJ, SagiM, CohenT. Familial hydrocephalus of prenatal onset. Am J Med Genet 1994;49:202–4.
23. ZlotogoraJ. Genetic disorders among Palestinian Arabs. 2. Hydrocephalus and neural tube defects. Am J Med Genet 1997;71:33–5.
24. ChudleyAE, McCulloughC, McCulloughDW. Bilateral sensorineural deafness and hydrocephalus due to foramen of Monro obstruction in sibs: a newly described autosomal recessive disorder. Am J Med Genet 1997;68:350–6.
25. Castro-GagoM, AlonsoA, Pintos-MartinezE, et al. Congenital hydranencephalic-hydrocephalic syndrome associated with mitochondrial dysfunction. J Child Neurol 1999;14:131–5.
26. ChalmersRM, AndreaeL, WoodNW, Durai RajRV, CaseyAT. Familial hydrocephalus. J Neurol Neurosurg Psychiatry 1999;67:410–11.
27. HamadaH, WatanabeH, SugimotoM, et al. Autosomal recessive hydrocephalus due to congenital stenosis of the aqueduct of Sylvius. Prenat Diagn 1999;19:1067–9.
28. SchinzelA. [Congenital structural defects in twins: diversity, etiology and genetic counseling]. Schweiz Rundsch Med Prax 1985;74:351–7.
29. BerkerE, GoldsteinG, LorberJ, PriestleyB, SmithA. Reciprocal neurological developments of twins discordant for hydrocephalus. Dev Med Child Neurol 1992;34:623–32.
30. KleinD, BersotH, BorleA. [Familial hydrocephalus with concordant manifestation in univitelline twins]. Confin Neurol 1953;13:158–60.
31. BorleA. [The etiology of congenital hydrocephalus with regard to a case of concordant hydrocephalus in monozygotic twins]. J Genet Hum 1953;2:157–202.
32. GellmanV. Congenital hydrocephalus in monovular twins. Arch Dis Child 1959;34:274–6.
33. IdowuOE, AngaAL. Congenital hydrocephalus in mono and dizygotic twins. East Central Afr J Surg 2009;14:64–8.
34. CoxPM, GibsonRA, MorganN, BruetonLA. VACTERL with hydrocephalus in twins due to Fanconi anemia (FA): mutation in the FAC gene. Am J Med Genet 1997;68:86–90.
35. HabibZ. Genetics and genetic counselling in neonatal hydrocephalus. Obstet Gynecol Surv 1981;36:529–34.
36. AdamsC, JohnstonWP, NevinNC. Family study of congenital hydrocephalus. Dev Med Child Neurol 1982;24:493–8.
37. MunchTN, RostgaardK, RasmussenML, et al. Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain 2012;135(Pt 8):2409–15.
38. LarsonCA. Hydrocephalus and incomplete fusion of fetal clefts; report on a kindred. Am J Hum Genet 1954;6:16–25.
39. MartinC, GotM, BabinJP, CazauranJM. [Familial hydrocephalus, a hereditary disease]. Arch Fr Pediatr 1971;28:787–8.
40. SheenVL, Basel-VanagaiteL, GoodmanJR, et al. Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus. Brain Dev 2004;26:326–34.
41. WillemsPJ. Heterogeneity in familial hydrocephalus. Am J Med Genet 1988;31:471–3.
42. PortenoyRK, BergerA, GrossE. Familial occurrence of idiopathic normal-pressure hydrocephalus. Arch Neurol 1984;41:335–7.
43. ZhangJ, WilliamsMA, RigamontiD. Heritable essential tremor-idiopathic normal pressure hydrocephalus (ETINPH). Am J Med Genet A. 2008;146A:433–9.
44. ZhangJ, CarrCW, RigamontiD, BadrA. Genome-wide linkage scan maps ETINPH gene to chromosome 19q12–13.31. Hum Her 2010;69:262–7.
45. TakahashiY, KawanamiT, NagasawaH, et al. Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant inheritance: a novel subgroup of NPH. J Neurol Sci 2011;308:149–51.
46. CusimanoMD, RewilakD, StussDT, et al. Normal-pressure hydrocephalus: is there a genetic predisposition?Can J Neurol Sci 2011;38:274–81.
47. GudmundssonG, KristjansdottirG, CookE, OlafssonI. Association of ApoE genotype with clinical features and outcome in idiopathic normal pressure hydrocephalus (iNPH): a preliminary report. Acta Neurochir 2009;151:1511–12.
48. CasmiroM, D’AlessandroR, CacciatoreFM, et al. Risk factors for the syndrome of ventricular enlargement with gait apraxia (idiopathic normal pressure hydrocephalus): a case-control study. J Neurol Neurosurg Psychiatry 1989;52:847–52.
49. NacmiasB, TeddeA, GuarnieriBM, et al. Analysis of apolipoprotein e, alpha1-antichymotrypsin and presenilin-1 genes polymorphisms in dementia caused by normal pressure hydrocephalus in man. Neurosci Lett 1997;229:177–80.
50. WiswellTE, TuttleDJ, NorthamRS, SimondsGR. Major congenital neurologic malformations. A 17-year survey. Am J Dis Child 1990;144:61–7.
51. BayC, KerzinL, HallBD. Recurrence risk in hydrocephalus. Birth Defects Orig Art Ser. 1979;15:95–105.
52. BurtonBK. Recurrence risks for congenital hydrocephalus. Clin Genet. 1979;16:47–53.
53. BurtonBK. Empiric recurrence risks for congenital hydrocephalus. Birth Defects Orig Art Ser 1979;15:107–15.
54. Abdul-KarimR, IliyaF, IskandarG. Consecutive hydrocephalus: report of 2 cases. Obstet Gynecol 1964;24:376–8.
55. TeebiAS, NaguibKK. Autosomal recessive nonsyndromal hydrocephalus. Am J Med Genet 1988;31:467–70.
56. GameK, FriedmanJM, ParadiceB, NormanMG. Fetal growth retardation, hydrocephalus, hypoplastic multilobed lungs, and other anomalies in 4 sibs. Am J Med Genet 1989;33:276–9.
57. MoogU, Bleeker-WagemakersEM, CrobachP, VlesJS, Schrander-StumpelCT. Sibs with Axenfeld-Rieger anomaly, hydrocephalus, and leptomeningeal calcifications: a new autosomal recessive syndrome?Am J Med Genet 1998;78:263–6.
58. Castro-GagoM, AlonsoA, Eiris-PunalJ. Autosomal recessive hydrocephalus with aqueductal stenosis. Childs Nerv Syst 1996;12:188–1.
59. MungenE, AtayV, ErtekinAA. Autosomal recessive hydrocephalus due to third ventricle obstruction. Int J Gynaecol Obstet 2005;91:168–9.
60. VerhagenWI, BartelsRH, FransenE, et al. Familial congenital hydrocephalus and aqueduct stenosis with probably autosomal dominant inheritance and variable expression. J Neurol Sci 1998;158:101–5.
61. MochizukiY, SuyehiroY, IharaY, et al. Congenital hydrocephalus and clasped thumbs: Two cases of brothers in a family. Brain Dev 1981;3:407–9.
62. Basel-VanagaiteL, Raas-RotchildA, KornreichL, et al. Familial hydrocephalus with normal cognition and distinctive radiological features. Am J Med Genet A 2010;152A:2743–8.
63. LapunzinaP, DelicadoA, de TorresML, et al. Autosomal recessive hydrocephalus due to aqueduct stenosis: report of a further family and implications for genetic counselling. J Matern Fetal Neonatal Med 2002;12:64–6.
64. NovaHR. Familial communicating hydrocephalus, posterior cerebellar agenesis, mega cisterna magna, and port-wine nevi. Report on five members of one family. J Neurosurg 1979;51:862–5.
65. LammerEJ, ScholesT, AbramsL. Autosomal recessive tetralogy of Fallot, unusual facies, communicating hydrocephalus, and delayed language development: A new syndrome?Clin Dysmorphol 2001;10:9–13.
66. BoguckiJ, TaraszewskaA, BaranieckaJ, CzernickiZ. Familial incidence of obstructive hydrocephalus due to posterior fossa tumours leading to the diagnosis of Von Hippel-Lindau disease – a case report. Folia Neuropathol 2002;40:219–22.
67. CardosoER. A familial coincidence of pseudotumor cerebri and communicating hydrocephalus. Neurosurgery 1991;29:796.
68. VincentC, KalatzisV, CompainS, et al. A proposed new contiguous gene syndrome on 8q consists of branchio-oto-renal (bor) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia; implications for the mapping of the bor gene. Hum Mol Genet 1994;3:1859–66.
69. JouetM, FeldmanE, YatesJ, et al. Refining the genetic location of the gene for X linked hydrocephalus within Xq28. J Med Genet 1993;30:214–17.
70. StrainL, GosdenCM, BrockDJ, BonthronDT. Genetic heterogeneity in X-linked hydrocephalus: linkage to markers within Xq27.3. Am J Hum Genet 1994;54:236–43.
71. JonesHC, DepelteauJS, CarterBJ, LopmanBA, MorelL. Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mamm Genome 2001;12:22–6.
72. JonesHC, DepelteauJS, CarterBJ, SomeraKC. The frequency of inherited hydrocephalus is influenced by intrauterine factors in H-Tx rats. Exp Neurol 2002;176:213–20.
73. JonesHC, YehiaB, ChenGF, CarterBJ. Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol 2004;190:79–90.
74. CaiX, McGrawG, PattisapuJV, et al. Hydrocephalus in the H-Tx rat: a monogenic disease?Exp Neurol 2000;163:131–5.
75. SasakiS, GotoH, NaganoH, et al. Congenital hydrocephalus revealed in the inbred rat, LEW/Jms. Neurosurgery 1983;13:548–54.
76. JonesHC, CarterBJ, MorelL. Characteristics of hydrocephalus expression in the LEW/Jms rat strain with inherited disease. Childs Nerv Syst 2003;19:11–18.
77. ZygourakisCC, RosenGD. Quantitative trait loci modulate ventricular size in the mouse brain. J Comp Neurol 2003;461:362–69.
78. LarkFH. Hydrocephalus, a hereditary character in the house mouse. Proc Natl Acad Sci USA 1932;18:654–6.
79. LarkFH. Anatomical basis of a hereditary hydrocephalus in the house mouse. Anat Rec 1934:225–33.
80. ImmermannK. Eine neue Mutation der Hausmaus: “Hydrocephalus”. Z Indukt Abstamm Vererbungsl 1933:176–80.
81. LarkFH. Two hereditary types of hydrocephalus in the house mouse (Mus musculus). Proc Natl Acad Sci USA 1935;21:150–52.
82. DickieM. Obstructive hydrocephalus. Mouse News Lett 1968:27.
83. BoritA, SidmanRL. New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol 1972;21:316–31.
84. GrunebergH. Two new mutant genes in the house mouse. J Genet 1943:22–8.
85. RaimondiAJ, BaileyOT, McLoneDG, LawsonRF, EcheverryA. The pathophysiology and morphology of murine hydrocephalus in hy-3 and ch mutants. Surg Neurol 1973;1:50–5.
86. RobinsonML, AllenCE, DavyBE, et al. Genetic mapping of an insertional hydrocephalus-inducing mutation allelic to hy3. Mamm Genome 2002;13:625–32.
87. DavyBE, RobinsonML. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in hydin, a large novel gene. Hum Mol Genet 2003;12:1163–70.
88. GreenMC. The developmental effects of congenital hydrocephalus (ch) in the mouse. Dev Biol 1970;23:585–608.
89. KumeT, DengKY, WinfreyV, et al. The forkhead/winged helix gene mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998;93:985–96.
90. HongHK, LassJH, ChakravartiA. Pleiotropic skeletal and ocular phenotypes of the mouse mutation congenital hydrocephalus (ch/mf1) arise from a winged helix/forkhead transcription factor gene. Hum Mol Genet 1999;8:625–37.
91. DescipioC, SchneiderL, YoungTL, et al. Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3c) syndrome. Am J Med Genet A 2005;134A:3–11.
92. AldingerKA, LehmannOJ, HudginsL, et al. Foxc1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 2009;41:1037–42.
93. ChaeTH, KimS, MarzKE, HansonPI, WalshCA. The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 2004;36:264–70.
94. HongHK, ChakravartiA, TakahashiJS. The gene for soluble n-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci USA 2004;101:1748–53.
95. KuwamuraM, KinoshitaA, OkumotoM, YamateJ, MoriN. Hemorrhagic hydrocephalus (hhy): a novel mutation on mouse chromosome 12. Brain Res Dev Brain Res 2004;152:69–72.
96. MoriN, KuwamuraM, TanakaN, et al. Ccdc85c encoding a protein at apical junctions of radial glia is disrupted in hemorrhagic hydrocephalus (hhy) mice. Am J Pathol 2012;180:314–27.
97. TakahashiA, ShiroishiT, KoideT. Multigenic factors associated with a hydrocephalus-like phenotype found in inter-subspecific consomic mouse strains. Mamm Genome 2008;19:333–8.
98. BruniJE, Del BigioMR, CardosoER, PersaudTV. Hereditary hydrocephalus in laboratory animals and humans. Exp Pathol 1988;35:239–46.
99. GalarzaM. Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 2002;25:205–15.
100. LeeK, TanJ, MorrisMB, et al. Congenital hydrocephalus and abnormal subcommissural organ development in sox3 transgenic mice. PloS One 2012;7:e29041.
101. SomeraKC, JonesH. Subcommissural organ dysfunction in H-Tx rats with early-onset hydrocephalus. Eur J Pediatr Surg 2002;12(Suppl 1):S45–7.
102. SomeraKC, JonesHC. Reduced subcommissural organ glycoprotein immunoreactivity precedes aqueduct closure and ventricular dilatation in H-Tx rat hydrocephalus. Cell Tissue Res 2004;315:361–73.
103. JonesHC, TottenCF, MayorgaDA, YueM, CarterBJ. Genetic loci for ventricular dilatation in the LEW/Jms rat with fetal-onset hydrocephalus are influenced by gender and genetic background. Cerebrospinal Fluid Res 2005;2:2
104. YamadaH, OiS, TamakiN, MatsumotoS, SudoK. Histological changes in the midbrain around the aqueduct in congenital hydrocephalic rat LEW/Jms. Childs Nerv Syst 1992;8:394–8.
105. DietrichP, ShanmugasundaramR, ShuyuE, DragatsisI. Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in wnt1 cell lineages. Hum Mol Genet 2009;18:142–50.
106. MatsumotoA, SusakiE, OnoyamaI, et al. Deregulation of the p57-e2f1-p53 axis results in nonobstructive hydrocephalus and cerebellar malformation in mice. Mol Cell Biol 2011;31:4176–92.
107. NakajimaM, MatsudaK, MiyauchiN, et al. Hydrocephalus and abnormal subcommissural organ in mice lacking presenilin-1 in wnt1 cell lineages. Brain Res 2011;1382:275–81.
108. Estivill-TorrusG, VitalisT, Fernandez-LlebrezP, PriceDJ. The transcription factor pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mech Dev 2001;109:215–24.
109. BaasD, MeinielA, BenadibaC, et al. A deficiency in rfx3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 2006;24:1020–30.
110. BlackshearPJ, GravesJP, StumpoDJ, et al. Graded phenotypic response to partial and complete deficiency of a brain-specific transcript variant of the winged helix transcription factor RFX4. Development 2003;130:4539–52.
111. SatokataI, MaasR. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994;6:348–56.
112. RamosC, MartinezA, RobertB, SorianoE. Msx1 expression in the adult mouse brain: Characterization of populations of beta-galactosidase-positive cells in the hippocampus and fimbria. Neuroscience 2004;127:893–900.
113. ZhangZ, SongY, ZhaoX, et al. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 2002;129:4135–46.
114. Fernandez-LlebrezP, GrondonaJM, PerezJ, et al. Msx1-deficient mice fail to form prosomere 1 derivatives, subcommissural organ, and posterior commissure and develop hydrocephalus. J Neuropathol Exp Neurol 2004;63:574–86.
115. RamosC, Fernandez-LlebrezP, BachA, RobertB, SorianoE. Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev Dyn 2004;230:446–60.
116. SakakibaraS, NakamuraY, YoshidaT, et al. RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA 2002;99:15194–9.
117. NechiporukT, FernandezTE, VasioukhinV. Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in dlg5-/- mice. Dev Cell 2007;13:338–50.
118. PazourGJ, DickertBL, VucicaY, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 2000;151:709–18.
119. Cardenas-RodriguezM, BadanoJL. Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet C Semin Med Genet 2009;151C:263–280.
120. BadanoJL, MitsumaN, BealesPL, KatsanisN. The ciliopathies: an emerging class of human genetic disorders. Ann Rev Genomics Hum Genet. 2006;7:125–48.
121. BanizsB, PikeMM, MillicanCL, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 2005;132:5329–39.
122. TakanoT, MekataY, YamanoT, ShimadaM. Early ependymal changes in experimental hydrocephalus after mumps virus inoculation in hamsters. Acta Neuropathol 1993;85:521–5.
123. TakanoT, RutkaJT, BeckerLE. Overexpression of nestin and vimentin in ependymal cells in hydrocephalus. Acta Neuropathol 1996;92:90–7.
124. JimenezAJ, TomeM, PaezP, et al. A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 2001;60:1105–19.
125. WagnerC, BatizLF, RodriguezS, et al. Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 2003;62:1019–40.
126. SmithEF. Hydin seek: finding a function in ciliary motility. J Cell Biol 2007;176:403–4.
127. LechtreckKF, DelmotteP, RobinsonML, SandersonMJ, WitmanGB. Mutations in hydin impair ciliary motility in mice. J Cell Biol 2008;180:633–43.
128. LechtreckKF, WitmanGB. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 2007;176:473–82.
129. SapiroR, KostetskiiI, Olds-ClarkeP, et al. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 2002;22:6298–305.
130. KobayashiY, WatanabeM, OkadaY, et al. Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 2002;22:2769–76.
131. Ibanez-TallonI, PagenstecherA, FliegaufM, et al. Dysfunction of axonemal dynein heavy chain mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 2004;13:2133–41.
132. LeeL, CampagnaDR, PinkusJL, et al. Primary ciliary dyskinesia in mice lacking the novel ciliary protein pcdp1. Mol Cell Biol 2008;28:949–57.
133. FliegaufM, BenzingT, OmranH. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007;8:880–93.
134. GavinoC, RichardS. Patched1 haploinsufficiency impairs ependymal cilia function of the quaking viable mice, leading to fatal hydrocephalus. Mol Cell Neurosci 2011;47:100–7.
135. WilsonGR, WangHX, EganGF, et al. Deletion of the Parkin co-regulated gene causes defects in ependymal ciliary motility and hydrocephalus in the quakingviable mutant mouse. Hum Mol Genet 2010;19:1593–602.
136. CorralesJD, BlaessS, MahoneyEM, JoynerAL. The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 2006;133:1811–21.
137. RachelRA, WellingtonSJ, WarburtonD, MasonCA, BeermannF. A new allele of gli3 and a new mutation, circletail (crc), resulting from a single transgenic experiment. Genesis 2002;33:55–61.
138. NaruseI, UetaE, SuminoY, OgawaM, IshikiriyamaS. Birth defects caused by mutations in human GLI3 and mouse Gli3 genes. Congenit Anom 2010;50:1–7.
139. WangS, HeF, XiongW, et al. Polycomblike-2-deficient mice exhibit normal left-right asymmetry. Dev Dyn 2007;236:853–61.
140. GulacsiAA, AndersonSA. Beta-catenin-mediated wnt signaling regulates neurogenesis in the ventral telencephalon. Nat Neurosci 2008;11:1383–91.
141. TangM, VillaescusaJC, LuoSX, et al. Interactions of wnt/beta-catenin signaling and sonic hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J Neurosci 2010;30:9280–91.
142. ThomasKR, CapecchiMR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 1990;346:847–50.
143. BanizsB, KomlosiP, BevenseeMO, et al. Altered ph(i) regulation and na(+)/hco3(-) transporter activity in choroid plexus of cilia-defective tg737(orpk) mutant mouse. Am J Physiol Cell Physiol 2007;292:C1409–16.
144. ChenJ, KnowlesHJ, HebertJL, HackettBP. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest 1998;102:1077–82.
145. TissirF, QuY, MontcouquiolM, et al. Lack of cadherins celsr2 and celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 2010;13:700–7.
146. WodarczykC, RoweI, ChiaravalliM, et al. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus. PloS One 2009;4:e7137.
147. ZhuJ, MotejlekK, WangD, et al. Beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 2002;129:2891–903.
148. NagraG, KohL, AubertI, KimM, JohnstonM. Intraventricular injection of antibodies to beta1-integrins generates pressure gradients in the brain favoring hydrocephalus development in rats. Am J Physiol Regul Integr Comp Physiol 2009;297:R1312–21.
149. KhelfaouiM, DenisC, van GalenE, et al. Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity. J Neurosci 2007;27:9439–50.
150. VieiraJP, LopesP, SilvaR. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol 2012;27:938–41.
151. TownT, BreunigJJ, SarkisianMR, et al. The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci USA 2008;105:2853–8.
152. VogelP, ReadRW, HansenGM, et al. Congenital hydrocephalus in genetically engineered mice. Vet Pathol 2012;49:166–81.
153. WangD, NykanenM, YangN, et al. Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency. Mol Cell Neurosci 2011;46:318–24.
154. FengX, PapadopoulosMC, LiuJ, et al. Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res 2009;87:1150–5.
155. SaadounS, TaitMJ, RezaA, et al. AQP4 gene deletion in mice does not alter blood-brain barrier integrity or brain morphology. Neuroscience 2009;161:764–72.
156. ShenXQ, MiyajimaM, OginoI, AraiH. Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg 2006;105:459–64.
157. MaoX, EnnoTL, Del BigioMR. Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 2006;23:2929–36.
158. SkjoldingAD, RowlandIJ, SogaardLV, et al. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res 2010;7:20.
159. KalaniMY, FilippidisAS, RekateHL. Hydrocephalus and aquaporins: the role of aquaporin-1. Acta Neurochir Suppl 2012;113:51–4.
160. AghayevK, BalE, RahimliT, et al. Aquaporin-4 expression is not elevated in mild hydrocephalus. Acta Neurochir 2012;154:753–9; discussion 759.
161. FilippidisAS, KalaniMY, RekateHL. Hydrocephalus and aquaporins: the role of aquaporin-4. Acta Neurochir Suppl 2012;113:55–8.
162. PaulL, MadanM, RammlingM, et al. Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery 2011;68:462–73.
163. RothKA, D’SaC. Apoptosis and brain development. Ment Retard Dev Disabil Res Rev 2001;7:261–6.
164. OiS, YamadaH, SatoO, MatsumotoS. Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 1996;12:292–302.
165. MiyanJA, KhanMI, KawaradaY, SugiyamaT, BannisterCM. Cell death in the brain of the HTx rat. Eur J Pediatr Surg 1998;8(Suppl 1):43–8.
166. MoriF, TanjiK, YoshidaY, WakabayashiK. Thalamic retrograde degeneration in the congenitally hydrocephalic rat is attributable to apoptotic cell death. Neuropathology 2002;22:186–93.
167. DraperCE, Owen-LynchPJ, BannisterCM, MiyanJ. Proliferation of cerebral cortical cells from the hydrocephalic HTx rat: an in vitro study. Eur J Pediatr Surg. 2001;11(Suppl 1):S51–2.
168. MashayekhiF, BannisterCM, MiyanJA. Failure in cell proliferation in the germinal epithelium of the HTx rats. Eur J Pediatr Surg 2001;11(Suppl 1):S57–9.
169. Samuels-LevY, O’ConnorDJ, BergamaschiD, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 2001;8:781–94.
170. VivesV, SuJ, ZhongS, et al. ASPP2 is a haploinsufficient tumor suppressor that cooperates with p53 to suppress tumor growth. Genes Dev 2006;20:1262–7.
171. CowanCM, RoskamsAJ. Caspase-3 and caspase-9 mediate developmental apoptosis in the mouse olfactory system. J Comp Neurol 2004;474:136–48.
172. HakemR, HakemA, DuncanGS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94:339–52.
173. Felderhoff-MueserU, BuhrerC, GroneckP, et al. Soluble fas (cd95/apo-1), soluble fas ligand, and activated caspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res 2003;54:659–64.
174. YoshidaH, KongYY, YoshidaR, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94:739–50.
175. CecconiF, Alvarez-BoladoG, MeyerBI, RothKA, GrussP. Apaf1 (ced-4 homolog) regulates programmed cell death in mammalian development. Cell 1998;94:727–37.
176. Inglis-BroadgateSL, ThomsonRE, PellicanoF, et al. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. Dev Biol 2005;279:73–85.
177. ZanklA, ElakisG, SusmanRD, et al. Prenatal and postnatal presentation of severe achondroplasia with developmental delay and acanthosis nigricans (saddan) due to the fgfr3 lys650met mutation. Am J Med Genet A 2008;146A:212–18.
178. BellusGA, BamshadMJ, PrzylepaKA, et al. Severe achondroplasia with developmental delay and acanthosis nigricans (saddan): phenotypic analysis of a new skeletal dysplasia caused by a lys650met mutation in fibroblast growth factor receptor 3. Am J Med Genet 1999;85:53–65.
179. LorberJ. The family history of uncomplicated congenital hydrocephalus: an epidemiological study based on 270 probands. Br Med J (Clin Res Ed) 1984;289:281–4.
180. LorberJ. The family history of “simple” congenital hydrocephalus. An epidemiological study based on 270 probands. Z Kinderchir 1984;39(Suppl 2):94–5.
181. Di RoccoC, RendeM. Neural tube defects. Some remarks on the possible role of glycosaminoglycans in the genesis of the dysraphic state, the anomaly in the configuration of the posterior cranial fossa, and hydrocephalus. Childs Nerv Syst 1987;3:334–41.
182. DonnaiD, FarndonPA. Examination of fetuses with a pre-termination diagnosis of neural tube defect or hydrocephalus. Z Kinderchir 1985;40(Suppl 1):51–2.
183. GilbertJN, JonesKL, RorkeLB, ChernoffGF, JamesHE. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery 1986;18:559–64.
184. GrilloE, da SilvaRJ. [Neural tube defects and congenital hydrocephalus. Why is prevalence important?]. J Pediatr(Rio J) 2003;79:105–6.
185. PensoC, RedlineRW, BenacerrafBR. A sonographic sign which predicts which fetuses with hydrocephalus have an associated neural tube defect. J Ultrasound Med 1987;6:307–11.
186. RajabA, VaishnavA, FreemanNV, PattonMA. Neural tube defects and congenital hydrocephalus in the sultanate of Oman. J Trop Pediatr 1998;44:300–3.
187. RobertsonRD, SartiDA, BrownWJ, CrandallBF. Congenital hydrocephalus in two pregnancies following the birth of a child with a neural tube defect: aetiology and management. J Med Genet 1981;18:105–7.
188. SchlatterD, SanseverinoMT, SchmittJM, et al. Severe fetal hydrocephalus with and without neural tube defect: a comparative study. Fetal Diagn Ther 2008;23:23–9.
189. WarfBC. Hydrocephalus associated with neural tube defects: characteristics, management, and outcome in sub-Saharan Africa. Childs Nerv Syst 2011;27:1589–94.
190. Hadzagic-CatibusicF, MaksicH, UzicaninS, et al. Congenital malformations of the central nervous system: clinical approach. Bosnian J Basic Med Sci 2008;8:356–60.
191. LaurenceKM. Genetic aspects of “uncomplicated” hydrocephalus and its relationship to neural tube defect. Z Kinderchirur 1984;39(Suppl 2):96–9.
192. UlfigN, BohlJ, NeudorferF, RezaieP. Brain macrophages and microglia in human fetal hydrocephalus. Brain Dev 2004;26:307–15.
193. ZhangW, YiMJ, ChenX, et al. Cortical thinning and hydrocephalus in mice lacking the immunoglobulin superfamily member CDO. Mol Cell Biol 2006;26:3764–72.
194. KrebsDL, MetcalfD, MersonTD, et al. Development of hydrocephalus in mice lacking socs7. Proc Natl Acad Sci USA 2004;101:15446–51.
195. InoueT, HatayamaM, TohmondaT, et al. Mouse zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol 2004;270:146–62.
196. TomitaS, UenoM, SakamotoM, et al. Defective brain development in mice lacking the hif-1alpha gene in neural cells. Mol Cell Biol 2003;23:6739–49.
197. WalzA, RodriguezI, MombaertsP. Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci 2002;22:4025–35.
198. das NevesL, DuchalaCS, Tolentino-SilvaF, et al. Disruption of the murine nuclear factor i-a gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci USA 1999;96:11946–51.
199. DrillerK, PagenstecherA, UhlM, et al. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 2007;27:3855–67.
200. ShenolikarS, VoltzJW, MinkoffCM, WadeJB, WeinmanEJ. Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci USA 2002;99:11470–5.
201. MakiyamaY, ShojiS, MizusawaH. Hydrocephalus in the otx2+/- mutant mouse. Exp Neurol 1997;148:215–21.
202. TullioAN, BridgmanPC, TresserNJ, et al. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J Comp Neurol 2001;433:62–74.
203. ParisiS, RussoT. Regulatory role of Klf5 in early mouse development and in embryonic stem cells. Vitam Horm 2011;87:381–97.
204. QinS, LiuM, NiuW, ZhangCL. Dysregulation of kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci USA 2011;108:21117–21.
205. LangB, SongB, DavidsonW, et al. Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J Clin Invest 2006;116:1924–34.
206. PickettsDJ. Neuropeptide signaling and hydrocephalus: Sco with the flow. J Clin Invest 2006;116:1828–32.
207. LouviA, WassefM. Ectopic engrailed 1 expression in the dorsal midline causes cell death, abnormal differentiation of circumventricular organs and errors in axonal pathfinding. Development 2000;127:4061–71.
208. SiiskonenH, OikariS, KorhonenVP, et al. Diazepam binding inhibitor overexpression in mice causes hydrocephalus, decreases plasticity in excitatory synapses and impairs hippocampus-dependent learning. Mol Cell Neurosci 2007;34:199–208.
209. Wyss-CorayT, FengL, MasliahE, et al. Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. Am J Pathol 1995;147:53–67.
210. ZhangJ, WilliamsMA, RigamontiD. Genetics of human hydrocephalus. J Neurol 2006;253:1255–66.

References

1. FernellE, HagbergG, HagbergB.Infantile hydrocephalus epidemiology: an indicator of enhanced survival. Arch Dis Child 1994;70:F1238.
2. JengS, GuptaN, WrenschM, et al. Prevalence of congenital hydrocephalus in California, 1991–2000. Pediatr Neurol 2011;45:67–71.
3. GarnelE, LoaneM, AddorMC, et al. Congenital hydrocephalus – prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol 2010;14:1505.
4. ChristensenJH, HansenLK, GarneE. Medfødt hydrocephalus – forekomst og prognose. Mortalitet og morbiditet i en populationsbaseret opgørelse. Ugeskr Laeger 2003;165:4669.
5. MassimiL, PaternosterG, FasanoT, et al. On the changing epidemiology of hydrocephalus. Childs Nerv Syst 2009;25:795800.
6. SunG, XuZM, LiangJF, et al. Twelve-year prevalence of common neonatal congenital malformations in Zhejiang Province, China. World J Pediatr 2011;7:3316.
7. CasmiroM, BenassiG, CacciatoreFM, et al. Frequency of idiopathic normal pressure hydrocephalus. Arch Neurol 1989;46:608.
8. VannesteJ, AugustijnP, DirvenC, et al. Shunting normal-pressure hydrocephalus: do the benefits outweigh the risks? A multicenter study and literature review. Neurology 1992;42:549.
9. TrenkwalderC, SchwarzJ, GebhardJ, et al. Starnberg trial on epidemiology of Parkinsonism and hypertension in the elderly. Prevalence of Parkinson’s disease and related disorders assessed by a door-to-door survey of inhabitants older than 65 years. Arch Neurol 1995;52:101722.
10. ValeFA, MirandaSJ. Clinical and demographic features of patients with dementia attended in a tertiary outpatient clinic. Arq Neuropsiquiatr 2002;60:54852.
11. KraussJK, HalveB. Normal pressure hydrocephalus: survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir (Wien) 2004;146:37988.
12. KnopmanDS, PetersenRC, ChaRH, et al. Incidence and causes of nondegenerative nonvascular dementia. A population-based study. Arch Neurol 2006;63:21821.
13. MarmarouA, YoungHF, AygokGA. Estimated incidence of normal pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. Neurosurg Focus 2007;22:E1.
14. BreanA, EidePK. Prevalence of probable idiopathic normal pressure hydrocephalus (iNPH) in a Norwegian population. Acta Neurol Scand 2008;118:4853.
15. MarmarouA, BergsneiderM, RelkinN, et al. Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery 2005;57:S1–S3.
16. HiraokaK, MeguroK, MoriE.Prevalence of idiopathic normal pressure hydrocephalus in the elderly population of a Japanese rural community. Neurol Med Chir (Tokyo) 2008;48:1979.
17. TanakaN, YamaguchiS, IshikawaH, et al. Prevalence of possible idiopathic normal-pressure hydrocephalus in Japan: the Osaki-Tajiri project. Neuroepidemiology 2009;32:1715.
18. IsekiC, KawanamiT, NagasawaH, et al. Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) in the elderly: a prospective study in a Japanese population. J Neurol Sci 2009;277:547.
19. KlassenBT, AhlskogJE. Normal pressure hydrocephalus. How often does the diagnosis hold water?Neurology 2011;77:111925.
20. MuangpaisanW, PetcharatC, SrinonprasertV. Prevalence of potentially reversible conditions in dementia and mild cognitive impairment in a geriatric clinic. Geriatr Gerontol Int 2012;12:5964.
21. ConnHO. Normal pressure hydrocephalus (NPH): more about NPH by a physician who is also the patient. Clin Med 2011;11:1625.
22. BoonAJ, TansJT, DelwelEJ, et al. Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 1997;87:68793.
23. PujariS, KharkarS, MetellusP, et al. Normal pressure hydrocephalus: long-term outcome after shunt surgery. J Neurol Neurosurg Psychiatry 2008;79:12826.
24. McGirtMJ, WoodworthG, CoonAL, et al. Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57:699705.
25. WoodworthGF, McGirtMJ, WilliamsMA, et al. Cerebrospinal fluid drainage and dynamics in the diagnosis of normal pressure hydrocephalus. Neurosurgery 2009;64:91925.
26. RoggJM, AhnSH, TungGA, et al. Prevalence of hydrocephalus in 157 patients with vestibular schwannoma. Neuroradiology 2005;47:34451.
27. HohBL, KleinhenzDT, ChiYY, et al. Incidence of ventricular shunt placement for hydrocephalus with clipping versus coiling for ruptured and unruptured cerebral aneurysms in the Nationwide Inpatient Sample database: 2002 to 2007. World Neurosurg 2011;76:54854.
28. TisellM, HöglundM, WikkelsøC. National and regional incidence of surgery for adult hydrocephalus in Sweden. Acta Neurol Scand 2005;112:725.
29. BreanA, FredøHL, SollidS, et al. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol Scand 2009;120:31416.