Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T07:19:29.759Z Has data issue: false hasContentIssue false

5 - Simple channels

Published online by Cambridge University Press:  05 May 2013

Daniel W. Bliss
Affiliation:
Arizona State University
Siddhartan Govindasamy
Affiliation:
Olin College of Engineering, Massachusetts
Get access

Summary

For most wireless communications, channels (what happens between the transmitter and receiver) are complicated things. For the sake of introduction, in this section we consider a single transmit antenna and receive antenna, residing in a universe without scatterers or blockage.

Antennas

The study and design of antennas is a rich field [15]. Here, we focus on a small set of essential features. The first important concept is that antennas do not radiate power uniformly in direction or in polarization. The radiated power as a function of direction is denoted the radiation pattern. If the antenna is small compared with the wavelength (for example, if the antenna fits easily within radius of a 1/8 wavelength), then the shape of the radiation pattern is relatively smooth. However, if the antenna is large compared with the wavelength, then the radiation pattern can be complicated. Antenna patterns are often displayed in terms of decibels relative to a notional isotropic antenna (denoted dBi). The notional isotropic antenna has the same gain over all 4π of solid angle. Gain is an indication of directional preference in the transmission and reception of power. The axisymmetric radiation pattern for an electrically small (small compared with a wavelength) dipole antenna is displayed in Figure 5.1. In the standard spherical coordinates of r, θ, φ, which correspond to the radial distance, the polar angle, and the azimuthal angle, respectively, the far-field electric field is limited to components along the direction of θ, denoted eθ.

Type
Chapter
Information
Adaptive Wireless Communications
MIMO Channels and Networks
, pp. 141 - 169
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×