Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2012
  • Online publication date: March 2012

Chapter 2 - Adaptive Expertise as Acceleration of Future Learning

from Part I - Adaptive Training Technology

References

Barnett, S. M., & Koslowski, B. (2002). Adaptive expertise: Effects of type of experience and the level of theoretical understanding it generates. Thinking and Reasoning, 8(4), 237–267.
Bhaskar, R., & Simon, H. A. (1977). Problem solving in semantically rich domains: An example from engineering thermodynamics. Cognitive Science, 1, 193–215.
Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of research in education, Vol. 24 (pp. 61–100). Washington, DC: American Educational Research Association.
Catrambone, R. (1994). Improving examples to improve transfer to novel problems. Memory and Cognition, 22(5), 606–615.
Chi, M., & VanLehn, K. (2007). The impact of explicit strategy instruction on problem-solving behaviors across intelligent tutoring systems. In D. S. McNamara & G. Trafton (Eds.), Proceedings of the 29th Conference of the Cognitive Science Society (pp. 167–172). Mahway, NJ: Erlbaum.
Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152.
Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the Psychology of Human Intelligence, Vol. 1 (pp. 7–75). Hillsdale, NJ: Lawrence Erlbaum Associates.
Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33–58.
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38.
Hardiman, P. T., Dufresne, R. J., & Mestre, J. P. (1989). The relation between problem categorization and problem solving among experts and novices. Memory & Cognition, 17(5), 627–638.
Hatano, G., & Inagaki, K. (1986). Two courses of expertise. In H. Stevenson, H. Azuma, & K. Hakuta (Eds.), Child development and education in Japan (pp. 262–272). New York: Freeman.
Hattie, J., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-analysis of findings. Review of Educational Research, 66, 99–136.
Haywood, H. C., & Tzuriel, D. (2002). Applications and challenges in dynamic assessment. Peabody Journal of Education, 77(2), 40–63.
Holyoak, K. J. (1991). Symbolic connectionism: Toward third-generation theories of expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 301–336). New York: Cambridge University Press.
Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive Science, 8, 255–273.
Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopher, D., & Wang, Y. (1988). Expertise in a complex skill: Diagnosing X-Ray Pictures. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise. Mahway, NJ: Erlbaum.
Martin, T., Petrosino, A., Rivale, S., & Diller, K. R. (2006). The development of adaptive expertise in biotransport. New Directions for Teaching and Learning, 108, 35–47.
Pandy, M. G., Petrosino, A., Austin, B. A., & Barr, R. E. (2004). Assessing adaptive expertise in undergraduate biomechanics. Journal of Engineering Education (July), 1–12.
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33–40.
Priest, A. G., & Lindsay, R. O. (1992). New light on novice-expert differences in physics problem solving. British Journal of Psychology, 83, 389–405.
Reif, F., & Allen, S. (1992). Cognition for interpreting scientific concepts: A study of acceleration. Cognition and Instruction, 9(1), 1–44.
Ross, B. (1987). This is like that: The use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology: Learning, Memory and Cognition, 13, 629–639.
Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4), 475–522.
Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1–51). Charlotte, NC: Information Age Publishing.
Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184.
Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard University Press.
Slotta, J. D., & Chi, M. T. H. (2006). Helping students understand challenging topics in science through ontology training. Cognition and Instruction, 24(2), 261–289.
VanderStoep, S. W., & Seifert, C. M. (1993). Learn ing “how” versus learning “when”: Improving transfer of problem-solving principles. The Journal of the Learning Sciences, 3(1), 93–111.
VanLehn, K. (1989). Problem solving and cognitive skill acquisition. In M. I. Posner (Ed.), Foundations of Cognitive Science (pp. 526–579). Cambridge, MA: MIT Press.
VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence and Education, 16, 227–265.
VanLehn, K., Bhembe, D., Chi, M., Lynch, C., Schulze, K., Shelby, R., et al. (2004). Implicit vs. explicit learning of strategies in a non- procedural skill. In J. C. Lester, R. M. Vicari, & F. Paraguaca (Eds.), Intelligent tutoring systems: 7th International Conference (pp. 521–530). Berlin: Spring-Verlag.
VanLehn, K., & Brown, J. S. (1980). Planning nets: A representation for formalizing analogies and semantic models of procedural skills. In R. E. Snow, P. A. Frederico, & W. E. Montague (Eds.), Aptitude learning and instruction: Cognitive process analyses (pp. 95–138). Hillsdale, NJ: Lawrence Erlbaum Associates.
VanLehn, K., & van de Sande, B. (2009). Acquiring conceptual expertise from modeling: The case of elementary physics. In K. A. Ericsson (Ed.), Development of professional expertise: Toward measurement of expert performance and design of optimal learning environments (pp. 356–378). Cambridge: Cambridge University Press.