Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T03:11:52.617Z Has data issue: false hasContentIssue false

6 - Toward Multiplex Ecological Networks: Accounting for Multiple Interaction Types to Understand Community Structure and Dynamics

from Part I - Food Webs: Complexity and Stability

Published online by Cambridge University Press:  05 December 2017

John C. Moore
Affiliation:
Colorado State University
Peter C. de Ruiter
Affiliation:
Wageningen Universiteit, The Netherlands
Kevin S. McCann
Affiliation:
University of Guelph, Ontario
Volkmar Wolters
Affiliation:
Justus-Liebig-Universität Giessen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Adaptive Food Webs
Stability and Transitions of Real and Model Ecosystems
, pp. 73 - 87
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, M. R. and Sala, O. E. (1999). Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution, 14(7), 273277.Google Scholar
Allesina, S. and Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483(7388), 205208.Google Scholar
Amarasekare, P. (2008). Spatial dynamics of food webs. Annual Review of Ecology, Evolution, and Systematics, 39(1), 479500.CrossRefGoogle Scholar
Arditi, R., Michalski, J., and Hirzel, A. H. (2005). Rheagogies: modelling non-trophic effects in food webs. Ecological Complexity, 2(3), 249258.Google Scholar
Bascompte, J., Jordano, P., Melián, C. J., and Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 93839387.Google Scholar
Berlow, E. L., Neutel, A.-M., Cohen, J. E., et al. (2004). Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 73(3), 585598.Google Scholar
Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., and Blüthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17(4), 341346.Google Scholar
Boccaletti, S., Bianconi, G., Criado, R., et al. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1122.Google Scholar
Borer, E. T., Anderson, K., Blanchette, C. A., et al. (2002). Topological approaches to food web analyses: a few modifications may improve our insights. Oikos, 99(2), 397401.CrossRefGoogle Scholar
Brose, U., Cushing, L., Berlow, E. L., et al. (2005). Body sizes of consumers and their resources. Ecology, 86(9), 2545.Google Scholar
Brose, U., Jonsson, T., Berlow, E. L., et al. (2006). Consumer–resource body-size relationships in natural food webs. Ecology, 87(10), 24112417.Google Scholar
Cardillo, A., Gómez-Gardeñes, J., Zanin, M., et al. (2013). Emergence of network features from multiplexity. Scientific Reports, 3, 1344.Google Scholar
Cohen, J. E., Pimm, S. L., Yodzis, P., and Saldana, J. (1993). Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology, 62(1), 6778.Google Scholar
Darwin, C. (1859). The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, Albemarle Street.Google Scholar
Davis, A. J., Liu, W., Perner, J., and Voigt, W. (2004). Reliability characteristics of natural functional group interaction webs. Evolutionary Ecology Research, 6(8), 11451166.Google Scholar
de Ruiter, P. C., Neutel, A.-M., and Moore, J. C. (1995). Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269(5228), 12571260.Google Scholar
Donohue, I., Petchey, O. L., Montoya, J. M., et al. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421429.Google Scholar
Fontaine, C., Guimarães, P. R., Kéfi, S., et al. (2011). The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14(11), 11701181.Google Scholar
Genini, J., Morellato, L. P. C., Guimarães, P. R., and Olesen, J. M. (2010). Cheaters in mutualism networks. Biology Letters, rsbl20091021.Google Scholar
Goudard, A. and Loreau, M. (2008). Nontrophic interactions, biodiversity, and ecosystem functioning: an interaction web model. American Naturalist, 171(1), 91106.Google Scholar
Gross, K. (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters, 11(9), 929936.Google Scholar
Holt, R. D. (2002). Food webs in space: on the interplay of dynamic instability and spatial processes. Ecological Research, 17(2), 261273.Google Scholar
Ings, T. C., Montoya, J. M., Bascompte, J., et al. (2009). Ecological networks: beyond food webs. Journal of Animal Ecology, 78(1), 253269.Google Scholar
Ives, A. R. and Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317(5834), 5862.Google Scholar
Jordán, F., Lauria, M., Scotti, M., et al. (2015). Diversity of key players in the microbial ecosystems of the human body. Scientific Reports, 5, 15920.Google Scholar
Jordano, P., Bascompte, J., and Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters, 6(1), 6981.Google Scholar
Kéfi, S., Berlow, E. L., Wieters, E. A., et al. (2012). More than a meal… integrating non-feeding interactions into food webs. Ecology Letters, 15, 291300.Google Scholar
Kéfi, S., Berlow, E. L., Wieters, E. A., et al. (2015). Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology, 96(1), 291303.Google Scholar
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., and Berlow, E. L. (2016). How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biology, 14(8), e1002527.Google Scholar
Kivelä, M., Arenas, A., Barthelemy, M., et al. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203271.Google Scholar
Krasnov, B. R., Fortuna, M. A., Mouillot, D., et al. (2012). Phylogenetic signal in module composition and species connectivity in compartmentalized host–parasite networks. American Naturalist, 179(4), 501511.Google Scholar
Lafferty, K. D., Dobson, A. P., and Kuris, A. M. (2006). Parasites dominate food web links. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 1121111216.Google Scholar
Lafferty, K. D., Allesina, S., Arim, M., et al. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters, 11(6), 533546.CrossRefGoogle ScholarPubMed
Lin, Y. and Sutherland, W. J. (2013). Color and degree of interspecific synchrony of environmental noise affect the variability of complex ecological networks. Ecological Modelling, 263, 162173.Google Scholar
Lurgi, M., Montoya, D., and Montoya, J. M. (2016). The effects of space and diversity of interaction types on the stability of complex ecological networks. Theoretical Ecology, 9(1), 313.Google Scholar
May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364), 413414.Google Scholar
McCann, K. S., Rasmussen, J. B., and Umbanhowar, J. (2005). The dynamics of spatially coupled food webs. Ecology Letters, 8(5), 513523.Google Scholar
Melián, C. J., Bascompte, J., Jordano, P., and Krivan, V. (2009). Diversity in a complex ecological network with two interaction types. Oikos, 118(1), 122130.Google Scholar
Montoya, J. M., Pimm, S. L., and Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259264.Google Scholar
Mougi, A. and Kondoh, M. (2012). Diversity of interaction types and ecological community stability. Science, 337(6092), 349351.Google Scholar
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876878.Google Scholar
Neutel, A.-M., Heesterbeek, J. A. P., van de Koppel, J., et al. (2007). Reconciling complexity with stability in naturally assembling food webs. Nature, 449(7162), 599602.Google Scholar
Ohgushi, T., Schmitz, O., and Holt, R. D. (2012). Trait-Mediated Indirect Interactions. Cambridge, UK: Cambridge University Press.Google Scholar
Okuyama, T. and Holland, J. N. (2008). Network structural properties mediate the stability of mutualistic communities. Ecology Letters, 11(3), 208216.Google Scholar
Olff, H., Alonso, D., Berg, M. P., et al. (2009). Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 17551779.Google Scholar
Pilosof, S., Porter, M. A., Pascual, M., and Kéfi, S. (2017). The multilayer nature of ecological networks. Nature in Ecology and Evolution, 1, 101.Google Scholar
Pimm, S. L. (1982). Food Webs. Chicago, IL: University of Chicago Press.Google Scholar
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(5949), 321326.CrossRefGoogle Scholar
Pocock, M. J. O., Evans, D. M., and Memmott, J. (2012). The robustness and restoration of a network of ecological networks. Science, 335(6071), 973977.Google Scholar
Saiz, H., and Alados, C. L. (2011). Effect of Stipa tenacissima L. on the structure of plant co-occurrence networks in a semi-arid community. Ecological Research, 26(3), 595603.Google Scholar
Sander, E. L., Wootton, J. T., and Allesina, S. (2015). What can interaction webs tell us about species roles? PLOS Computational Biology, 11(7), e1004330.Google Scholar
Sanders, D. and van Veen, F. J. F. (2011). Ecosystem engineering and predation: the multi-trophic impact of two ant species. Journal of Animal Ecology, 80, 569576.Google Scholar
Sanders, D., Jones, C. G., Thébault, E., et al. (2014). Integrating ecosystem engineering and food webs. Oikos, 123(5), 513524.Google Scholar
Sauve, A. M. C., Fontaine, C., and Thébault, E. (2014). Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos, 123(3), 378384.Google Scholar
Sauve, A. M. C., Thébault, E., Pocock, M. J. O., and Fontaine, C. (2016). How plants connect pollination and herbivory networks and their contribution to community stability. Ecology, 97(4), 908917.Google Scholar
Soliveres, S., Smit, C., and Maestre, F. T. (2015). Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning, and evolution of plant communities. Biological Reviews of the Cambridge Philosophical Society, 90(1), 297313.Google Scholar
Thébault, E. and Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329(5993), 853856.Google Scholar
Vázquez, D. P., Poulin, R., Krasnov, B. R., and Shenbrot, G. I. (2005). Species abundance and the distribution of specialization in host–parasite interaction networks. Journal of Animal Ecology, 74(5), 946955.Google Scholar
Verdú, M., and Valiente-Banuet, A. (2008). The nested assembly of plant facilitation networks prevents species extinctions. American Naturalist, 172(6), 751760.CrossRefGoogle ScholarPubMed
Williams, R. J. and Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404(6774), 180183.Google Scholar
Wood, S. A., Lilley, S. A., Schiel, D. R., and Shurin, J. B. (2010). Organismal traits are more important than environment for species interactions in the intertidal zone. Ecology Letters, 13(9), 11601171.Google Scholar
Wootton, J. T., Sander, E. L., and Allesina, S. (2015). Data from: What can interaction webs tell us about species roles? Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.39jv1 [Accessed March 22, 2017].Google Scholar
Yodzis, P. (1981). The stability of real ecosystems. Nature, 289, 674676.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×