Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T21:45:11.287Z Has data issue: false hasContentIssue false

10 - Action verbs, argument structure constructions, and the mirror neuron system

Published online by Cambridge University Press:  01 September 2009

David Kemmerer
Affiliation:
Department of Speech, Language, and Hearing Sciences Purdue University, West Lafayette IN 47907, USA
Michael A. Arbib
Affiliation:
University of Southern California
Get access

Summary

Introduction

This chapter reviews recent evidence that the linguistic representation of action is grounded in the mirror neuron system. Section 10.2 summarizes the major semantic properties of action verbs and argument structure constructions, focusing on English but also considering cross-linguistic diversity. The theoretical framework is Construction Grammar, which maintains that the argument structure constructions in which action verbs occur constitute basic clausal patterns that express basic patterns of human experience. For example, the sentence She sneezed the napkin off the table exemplifies the Caused Motion Construction, which has the schematic meaning “X causes Y to move along path Z,” and the sentence She kissed him unconscious exemplifies the Resultative Construction, which has the schematic meaning “X causes Y to become Z” (Goldberg, 1995).

Section 10.3 addresses the neuroanatomical substrates of action verbs and argument structure constructions. A number of neuroimaging and neuropsychological studies are described which suggest that different semantic properties of action verbs are implemented in different cortical components of the mirror neuron system, especially in the left hemisphere: (1) motoric aspects of verb meanings (e.g., the type of action program specified by kick) appear to depend on somatotopically mapped primary motor and premotor regions; (2) agent–patient spatial–interactive aspects of verb meanings (e.g., the type of object-directed path specified by kick) appear to depend on somatotopically mapped parietal regions; and (3) visual manner-of-motion aspects of verb meanings (e.g., the visual movement pattern specified by kick) appear to depend on posterior middle temporal regions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbib, M. A., 2005. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav. Brain Sci. 28: 105–167.CrossRefGoogle ScholarPubMed
Arbib, M. A., and Hill, J. C., 1988. Language acquisition: schemas replace universal grammar. In Hawkins, J. A. (ed.) Explaining Language Universals. Oxford, UK: Blackwell, pp. 56–72.Google Scholar
Bak, T. H., and Hodges, J. R., 2003. “Kissing and dancing” – a test to distinguish the lexical and conceptual contributions to noun/verb and object/action dissociations: preliminary results in patients with frontotemporal dementia. J. Neuroling. 16: 169–181.CrossRefGoogle Scholar
Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S., and Hodges, J. R., 2001. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain 124: 103–130.CrossRefGoogle ScholarPubMed
Baker, C. I., Keysers, C., Jallema, T., Wicker, B., and Perrett, D. I., 2001. Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Exp. Brain Res. 140: 375–381.CrossRefGoogle ScholarPubMed
Barraclough, N. E., Xiao, D., Baker, C. I., Oram, M. W., and Perrett, D. I., 2005. Integration of visual and auditory information by STS neurons responsive to the sight of actions. J. Cogn. Neurosci. 17: 377–391.CrossRefGoogle ScholarPubMed
Barsalou, L. W., 2003. Situated simulation in the human conceptual system. Lang. Cogn. Proc. 18: 513–562.CrossRefGoogle Scholar
Barsalou, L. W., Simmons, W. K., Barbey, A., and Wilson, C. D., 2003. Grounding conceptual knowledge in modality-specific systems. Trends Cogn. Sci. 7: 84–91.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Lee, K. E., Haxby, J. V., and Martin, A., 2003. fMRI responses to video and point-light displays of moving humans and manipulable objects. J. Cogn. Neurosci. 15: 991–1001.CrossRefGoogle ScholarPubMed
Buccino, G., Binkofski, F., Fink, G. R., et al., 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13: 400–404.Google Scholar
Buccino, G., Lui, F., Canessa, N., et al., 2004. Neural circuits involved in the recognition of actions performed by non-conspecifics: an fMRI study. J. Cogn. Neurosci. 16: 114–126.CrossRefGoogle Scholar
Buccino, G., Riggio, L., Melli, G., et al., 2004. Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Cogn. Brain Res. 24: 355–363.CrossRefGoogle Scholar
Castillo, M. V., 1996. The Grammar of Possession: Inalienability and Possessor Ascension in Guarani. Amsterdam, Netherlands: John Benjamins.CrossRefGoogle Scholar
Caramazza, A., and Mahon, B. Z., 2006. The organization of conceptual knowledge in the brain: the future's past and the some future directions. Cogn. Neuropsychol. 23: 13–38.CrossRefGoogle ScholarPubMed
Caramazza, A., and Shapiro, K., 2004. The organization of lexical knowledge in the brain: the grammatical dimension. In Gazzaniga, M. (ed.) The Cognitive Neurosciences, vol. 3. Cambridge, MA: MIT Press, pp. 803–814.Google Scholar
Chappell, H., and McGregor, W. (eds.), 1996. The Grammar of Inalienability. Berlin, Germany: Mouton de Gruyter.CrossRef
Chomsky, N., 1959. A review of B. F. Skinner's Verbal Behavior. Language 35: 26–58.CrossRefGoogle Scholar
Croft, W., 1991. Syntactic Categories and Grammatical Relations. Chicago, IL: University of Chicago Press.Google Scholar
Croft, W. 1998. Event structure in argument linking. In Butt, M. and Geuder, W. (eds.) The Projection of Arguments. Stanford, CA: CSLI, pp. 21–64.Google Scholar
Croft, W. 2001. Radical Construction Grammar. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Croft, W., and Cruse, D. A., 2004. Cognitive Linguistics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Culicover, P. W., 1999. Syntactic Nuts. Oxford, UK: Oxford University Press.Google Scholar
Damasio, A. R., 1989. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33: 25–62.CrossRefGoogle ScholarPubMed
Damasio, H., Grabowski, T. J., Tranel, D., et al., 2001. Neural correlates of naming actions and of naming spatial relations. Neuroimage 13: 1053–1064.CrossRefGoogle ScholarPubMed
Damasio, H., Tranel, D., Grabowski, T. J., Adolphs, R., and Damasio, A. R., 2004. Neural systems behind word and concept retrieval. Cognition 92: 179–229.CrossRefGoogle ScholarPubMed
Deacon, T. W., 1997. The Symbolic Species. New York: Norton.Google Scholar
Decety, J., Grezes, J., Costes, N., et al., 1997. Brain activity during observation of actions: influence of action content and subject's strategy. Brain 120: 1763–1777.CrossRefGoogle ScholarPubMed
Dick, F., Dronkers, N., Pizzamiglio, L., et al., 2004. Language and the brain. In Tomasello, M. and Slobin, D. (eds.) Beyond Nature–Nurture: Essays in Honor of Elizabeth Bates. Mahwah, NJ: Lawrence Erlbaum, pp. 237–261.Google Scholar
Diessel, H., 2004. The Acquisition of Complex Sentences. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Dixon, R. M. W., 2000. A typology of causatives: form, syntax, and meaning. In Dixon, R. M. W. and Aikhenvald, A. Y. (eds.) Changing Valency. Cambridge, UK: Cambridge University Press, pp. 30–83.CrossRef
Dronkers, N. F., Wilkins, D. P., VanValin, Jr. Valin, Jr. R. D., Redfern, B. B., and Jaeger, J. J., 2004. Lesion analysis of the brain areas involved in language comprehension using a new method of lesion analysis. Cognition 92: 145–177.CrossRefGoogle Scholar
Fadiga, L., Fogassi, L., Pavesi, G., and Rizzolatti, G., 1995. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophys. 73: 2608–2611.CrossRefGoogle ScholarPubMed
Fellbaum, C., 1998. A semantic network of English verbs. In Fellbaum, C. (ed.) Wordnet. Cambridge, MA: MIT Press, pp. 69–104.Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G., and Fogassi, L., 2003. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur. J. Neurosci. 17: 1703–1714.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersim, F., and Rizzolatti, G. 2005. Parietal lobe: from action organization to intention understanding. Science 308: 662–667.CrossRefGoogle ScholarPubMed
Friederici, A. D., 2004. The neural basis of syntactic processes. In Gazzaniga, M. (ed.) The Cognitive Neurosciences, vol. 3. Cambridge, MA: MIT Press, pp. 803–814.Google Scholar
Frith, C., and Wolpert, D. (eds.), 2003. The Neuroscience of Social Interaction. Oxford, UK: Oxford University Press.Google Scholar
Gallese, V., and Lakoff, G., 2005. The brain's concepts: the role of the sensory-motor system in conceptual knowledge. Cogn. Neuropsych. 22: 455–479.
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G., 1996. Action recognition in the premotor cortex. Brain 119: 593–609.CrossRefGoogle ScholarPubMed
Gallese, V., Fogassi, L., Fadiga, L., and Rizzolatti, G., 2002. Action representation and the inferior parietal lobule. In Prinz, W. and Hommel, B. (eds.) Attention and Performance, vol. 19, Common Mechanisms in Perception and Action. Oxford, UK: Oxford University Press, pp. 334–355.Google Scholar
Goldberg, A., 1995. Constructions: A Construction Grammar Approach to Argument Structure. Chicago, IL: Univerisity of Chicago Press.Google Scholar
Goldberg, A. 1998. Patterns of experience in patterns of language. In Tomasello, M. (ed.) The New Psychology of Language, vol. 1. Mahwah, NJ: Lawrence Erlbaum, pp. 203–220.Google Scholar
Goldberg, A., 2003. Constructions: a new theoretical approach to language. Trends Cogn. Sci. 7: 219–224.CrossRefGoogle Scholar
Gropen, J., Pinker, S., Hollander, M., and Goldberg, R., 1991. Affectedness and direct objects: the role of semantics in the acquisition of verb argument structure. Cognition 41: 143–195.CrossRefGoogle ScholarPubMed
Haspelmath, M., 2003. The geometry of grammatical meaning: semantic maps and cross-linguistic comparison. In Tomasello, M. (ed.) The New Psychology of Language, vol. 2. Mahwah, NJ: Lawrence Erlbaum, pp. 211–242.
Hauk, O., and Pulvermüller, F., 2004. Neurophysiological distinction of action words in the fronto-central cortex. Hum. Brain Map. 21: 191–201.CrossRefGoogle ScholarPubMed
Hauk, O., Johnsrude, I., and Pulvermüller, F., 2004. Somatotopic representation of action words in human motor and premotor cortex. Neuron 41: 301–307.CrossRefGoogle ScholarPubMed
Hill, J. C., 1983. A computational model of language acquisition in the two-year-old. Cogn. Brain Theory 6: 287–317.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., et al., 1999. Cortical mechanisms of human imitation. Science 286: 2526–2528.CrossRefGoogle ScholarPubMed
Indefrey, P., Brown, C. M., Hellwig, F., et al., 2001. A neural correlate of syntactic encoding during speech production. Proc. Natl Acad. Sci. USA, 98: 5933–5936.CrossRefGoogle ScholarPubMed
Indefrey, P., Hellwig, F., Herzog, H., Seitz, R. J., and Hagoort, P., 2004. Neural responses to the production and comprehension of syntax in identical utterances. Brain Lang. 89: 312–319.CrossRefGoogle ScholarPubMed
Jackendoff, R., 1990. Semantic Structures. Cambridge, MA: MIT Press.Google Scholar
Jackendoff, R. 1994. Patterns in the Mind. New York: Basic Books.Google Scholar
Jackendoff, R. 2002. Foundations of Language. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Johnson-Frey, S. H., 2004. The neural bases of complex tool use in humans. Trends Cogn. Sci. 8: 71–78.CrossRefGoogle ScholarPubMed
Jonkers, R., 2000. Verb finding problems in Broca's aphasics: the influence of transitivity. In Bastiaanse, R. and Grodzinsky, Y. (eds.) Grammatical Disorders in Aphasia. London: Whurr, pp. 105–122.Google Scholar
Kable, J. W., Lease-Spellmeyer, J., and Chatterjee, A., 2002. Neural substrates of action event knowledge. J. Cogn. Neurosci. 14: 795–805.CrossRefGoogle ScholarPubMed
Kemmerer, D., 2000a. Grammatically relevant and grammatically irrelevant features of verb meaning can be independently impaired. Aphasiology 14: 997–1020.CrossRefGoogle Scholar
Kemmerer, D., 2000b. Selective impairment of knowledge underlying prenominal adjective order: evidence for the autonomy of grammatical semantics. J. Neuroling. 13: 57–82.CrossRefGoogle Scholar
Kemmerer, D., 2003. Why can you hit someone on the arm but not break someone on the arm? A neuropsychological investigation of the English body-part possessor ascension construction. J. Neuroling. 16: 13–36.CrossRefGoogle Scholar
Kemmerer, D., 2005. The spatial and temporal meanings of English prepositions can be independently impaired. Neuropsychologia 43: 795–806.CrossRefGoogle ScholarPubMed
Kemmerer, D., and Tranel, D., 2000. Verb retrieval in brain-damaged subjects. I. Analysis of stimulus, lexical, and conceptual factors. Brain Lang. 73: 347–392.CrossRefGoogle ScholarPubMed
Kemmerer, D., and Tranel, D., 2003. A double dissociation between the meanings of action verbs and locative prepositions. Neurocase 9: 421–435.CrossRefGoogle ScholarPubMed
Kemmerer, D., and Wright, S. K., 2002. Selective impairment of knowledge underlying un-prefixation: further evidence for the autonomy of grammatical semantics. J. Neuroling. 15: 403–432.CrossRefGoogle Scholar
Kemmerer, D., Weber-Fox, C., Price, K., Zdansczk, C., and Way, H. (in press). Big brown dog or Brown big dog? An electrophysiological study of semantic constraints on prenominal adjective order. Brain and Language.
Keysers, C., and Perrett, D. I., 2004. Demystifying social cognition: a Hebbian perspective. Trends Cogn. Sci. 8: 501–507.CrossRefGoogle ScholarPubMed
Kita, S., and Özyürek, A., 2003. What does cross-linguistic variation in semantic coordination of speech and gesture reveal? Evidence for an interface representation of spatial thinking and speaking. J. Mem. Lang. 48: 16–32.CrossRefGoogle Scholar
Kohler, E., Keysers, C., Umiltà, M. A., et al., 2002. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297: 846–848.CrossRefGoogle ScholarPubMed
Kohonen, T., and Hari, R., 1999. Where the abstract feature maps of the brain might come from. Trends Neurosci. 22: 135–139.CrossRefGoogle Scholar
Kourtzi, Z., and Kanwisher, N., 2000. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12: 48–55.CrossRefGoogle ScholarPubMed
Lakoff, G., and Johnson, M., 1999. Philosophy in the Flesh. Chicago, IL: University of Chicago Press.Google Scholar
Levin, B., 1993. English Verb Classes and Alternations. Chicago, IL: University of Chicago Press.Google Scholar
Lewis, J. W., Wightman, F. L., Brefczynski, J. A., et al., 2004. Human brain regions involved in recognizing environmental sounds. Cereb. Cortex 14: 1008–1021.CrossRefGoogle ScholarPubMed
Mahon, B., and Caramazza, A., 2005. The orchestration of the sensory-motor systems: clues from neuropsychology. Cogn. Neuropsych. 22: 480–494.CrossRefGoogle ScholarPubMed
Martin, A., and Caramazza, A. (eds.) 2003. The Organization of Conceptual Knowledge in the Brain. Philadelphia, PA: Psychology Press.Google Scholar
Martin, A., Ungerleider, L. G., and Haxby, J. V., 2000. Category specificity and the brain: the sensory/motor model of semantic representations of objects. In Gazzaniga, M. S. (ed.) The New Cognitive Neurosciences. Cambridge, MA: MIT Press, pp. 1023–1036.Google Scholar
Monahen, T., and Wee, L. (eds.) 1999. Grammatical Semantics. Stanford, CA: CLSI.
Neininger, B., and Pulvermüller, F., 2003. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia 41: 53–70.CrossRefGoogle ScholarPubMed
Oh, K., 2003. Language, cognition, and development: motion events in English and Korean. Ph. D. dissertation, University of California, Berkeley, CA.
Pinker, S., 1989. Learnability and Cognition. Cambridge, MA: MIT Press.Google Scholar
Pinker, S., 2003. Language as an adaptation to the cognitive niche. In Christiansen, M. H. and Kirby, S. (eds.) Language Evolution. Oxford, UK: Oxford University Press, pp. 16–37.CrossRefGoogle ScholarPubMed
Pinker, S., and Jackendoff, R., 2005. The faculty of language: what's special about it?Cognition 95: 201–236.CrossRefGoogle Scholar
Puce, A., and Perrett, D., 2003. Electrophysiology and brain imaging of biological motion. In Frith, C. and Wolpert, D. (eds.) The Neuroscience of Social Interaction. Oxford, UK: Oxford University Press, pp. 1–22.
Pulvermüller, F., Shtyrov, Y., and Ilmoniemi, R., in press-a. Brain signatures of meaning access in action word recognition. J. Cogn. Neurosci.
Pulvermüller, F., Hauk, O., Nikulin, V., and Ilmoniemi, R., in press-b. Functional links between motor and language systems. Eur. J. Neurosci.
Raos, V., Evangeliou, M. N., and Savaki, H. E., 2004. Observation of action: grasping with the mind's hand. Neuroimage, 23: 193–201.CrossRefGoogle ScholarPubMed
Rappaport Hovrav, M., and Levin, B., 1998. Building verb meanings. In Butt, M. and Geuder, W. (eds.) The Projection of Arguments. Stanford, CA : CSLI, pp. 97–134.Google Scholar
Rizzolatti, G., and Luppino, G., 2001. The cortical motor system. Neuron 31: 889–901.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Matelli, M., 2003. Two different streams form the dorsal visual system: anatomy and functions. Exp. Brain Res. 153: 146–157.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., et al., 1988. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp. Brain Res. 71: 491–507.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L., 1996a. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3: 131–141.CrossRefGoogle Scholar
Rizzolatti, G., Fadiga, L., Matelli, M., et al., 1996b. Localization of grasp representations in humans by PET. I. Observation vs. execution. Exp. Brain Res. 111: 246–252.CrossRefGoogle Scholar
Rizzolatti, G., Fogassi, L., and Gallese, V., 2000. Cortical mechanisms subserving object grasping and action recognition: a new view on the corticala motor functions. In Gazzaniga, M. S. (ed.) The New Cognitive Neurosciences. Cambridge, MA: MIT Press, pp. 539–552.Google Scholar
Saygin, A. P., Wilson, S. M., Hagler, D. J., Bates, E., and Sereno, M. I., 2004a. Point-light biological motion perception activates human premotor cortex. J. Neurosci. 24: 6181–6188.CrossRefGoogle Scholar
Saygin, A. P., Wilson, S. M., Dronkers, N. F., and Bates, E., 2004b. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia, 42: 1788–1804.CrossRefGoogle Scholar
Senior, C., Barnes, J., Giampietro, V., et al., 2000. The functional neuroanatomy of implicit motion perception or “representational momentum.” Curr. Biol. 10: 16–22.CrossRefGoogle ScholarPubMed
Simmons, K., and Barsalou, L. W., 2003. The similarity-in-topography principle: reconciling theories of conceptual deficits. Cogn. Neuropsych. 20: 451–486.CrossRefGoogle ScholarPubMed
Slobin, D. I., 2000. Verbalized events: a dynamic approach to linguistic relativity and determinism. In Niemeier, S. and Dirven, R. (eds.) Evidence for Linguistic Relativity. Amsterdam, Netherlands: Benjamin, pp. 107–138.CrossRefGoogle Scholar
Slobin, D. I., 2003. Language and thought online: cognitive consequences of linguistic relativity. In Gentner, D. and Goldin-Meadow, S. (eds.) Language in Mind: Advances in the Study of Language and Thought. Cambridge, MA: MIT Press, pp. 157–192.Google Scholar
Talmy, L., 1985. Lexicalization patterns: semantic structure in lexical forms. In Shopen, T. (ed.) Language Typology and Syntactic Description, vol. 3. Cambridge, UK: Cambridge University Press, pp. 136–149.
Tettamanti, M., Buccino, G., Saccuman, M. C., et al., 2005. Listening to action-related sentences activates fronto-parietal motor circuits. J. Cogn. Neurosci. 17: 273–281.CrossRefGoogle ScholarPubMed
Tomasello, M., 1999. The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., 2000. The item-based nature of children's early syntactic development. Trends Cogn. Sci. 4: 156–163.CrossRefGoogle ScholarPubMed
Tomasello, M., 2003a. Constructing a Language. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., 2003b. On the different origins of symbols and grammar. In Christiansen, M. H. and Kirby, S. (eds.) Language Evolution. Oxford, UK: Oxford University Press, pp. 94–110.CrossRefGoogle Scholar
Tomasello, M., (in press). Understanding and sharing intentions: the origins of cultural cognition. Behav. Brain Sci.
Tranel, D., and Kemmerer, D., 2004. Neuroanatomical correlates of locative prepositions. Cogn. Neuropsychol. 21: 719–749.CrossRefGoogle ScholarPubMed
Tranel, D., Damasio, H., and Damasio, A. R., 1997. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35: 1319–1327.CrossRefGoogle ScholarPubMed
Tranel, D., Damasio, H., Eichhorn, G., et al., 2003a. Neural correlates of naming animals from their characteristic sounds. Neuropsychologia 41: 847–854.CrossRefGoogle Scholar
Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H., and Damasio, A. N., 2003b. Neural correlates of conceptual knowledge of actions. Cogn. Neuropsychol. 20: 409–432.CrossRefGoogle Scholar
Umiltà, M. A., Kohler, E., Gallese, V., et al., 2001. “I know what you are doing”: a neurophysiological study. Neuron, 32: 91–101.Google Scholar
Van, Valin R., and LaPolla, R., 1997. Syntax. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Wheaton, K. J., Thompson, J. C., Syngeniotis, A., Abbott, D. F., and Puce, A., 2004. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage 22: 277–288.CrossRefGoogle ScholarPubMed
Wierzbicka, A., 1988. The Semantics of Grammar. Amsterdam, Netherlands: Benjamin.CrossRefGoogle Scholar
Wierzbicka, A., 1998. The semantics of English causative constructions, in a universal-typological perspective. In Tomasello, M. (ed.) The New Psychology of Language, vol. 1. Mahwah, NJ: Lawrence Erlbaum, pp. 113–153.Google Scholar
Wu, D. H., Morganti, A., and Chatterjee, A., 2004. Neural substrates of the path and manner of movement. Hum. Brain Map. Abstracts, Poster No. TU 332.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×