Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T18:57:06.630Z Has data issue: false hasContentIssue false

10 - THICK DISCS

Published online by Cambridge University Press:  05 June 2012

Juhan Frank
Affiliation:
Louisiana State University
Andrew King
Affiliation:
University of Leicester
Derek Raine
Affiliation:
University of Leicester
Get access

Summary

Introduction

In previous chapters we have discussed extensively the theory and applications of thin (HR) accretion discs. We hope the reader will by now be convinced that this theory is reasonably well understood, and that it rests on a fairly firm observational basis. The case for thick (HR) accretion discs however is less compelling as the theory is still under development and the relevant observations are few, difficult and indirect. Furthermore, since the publication of the first papers on equilibrium thick discs or tori much work has been done on extending these solutions allowing some form of poloidal flow and studying extensively their dynamical stability. The wealth of these investigations is a testimony to the interest generated by these structures. The results obtained so far virtually rule out the reality of thick discs as non-accreting toroidal equilibria but leave open the more exciting possibility of the existence of closely related accreting flows which could be of astrophysical interest. We begin here by discussing the toroidal equilibria without accretion and summarize the stability results at the end of this chapter. More recent and more general solutions with radial and other poloidal flows are discussed in Chapter 11.

The current interest in the theory of the structure, evolution and stability of thick accretion discs is due to the possibility that thick discs may be relevant to the understanding of the central power sources in radio galaxies and quasars (see Chapters 7–9).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • THICK DISCS
  • Juhan Frank, Louisiana State University, Andrew King, University of Leicester, Derek Raine, University of Leicester
  • Book: Accretion Power in Astrophysics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164245.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • THICK DISCS
  • Juhan Frank, Louisiana State University, Andrew King, University of Leicester, Derek Raine, University of Leicester
  • Book: Accretion Power in Astrophysics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164245.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • THICK DISCS
  • Juhan Frank, Louisiana State University, Andrew King, University of Leicester, Derek Raine, University of Leicester
  • Book: Accretion Power in Astrophysics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164245.013
Available formats
×