Book contents
- Treatment of Dystonia
- Treatment of Dystonia
- Copyright page
- Contents
- Contributors
- Preface
- 1 Development of the Concept of Dystonia as a Disease, a Syndrome and a Movement Phenomenology
- Section I Basics
- Section II Botulinum Toxin Therapy
- Section III Musician’s Dystonia
- Section IV Psychogenic Dystonia
- Section V Treatment of Paediatric Dystonia
- Section VI Rehabilitation of Dystonia
- Section VII Pharmacotherapy for Dystonia
- Section VIII Surgical Treatment of Dystonia
- Section IX Deep Brain Stimulation for Dystonia
- Section X Emerging Therapies for Dystonia
- Section XI Future Trends in Dystonia Therapy
- Book part
- Index
- References
Section II - Botulinum Toxin Therapy
Published online by Cambridge University Press: 31 May 2018
Book contents
- Treatment of Dystonia
- Treatment of Dystonia
- Copyright page
- Contents
- Contributors
- Preface
- 1 Development of the Concept of Dystonia as a Disease, a Syndrome and a Movement Phenomenology
- Section I Basics
- Section II Botulinum Toxin Therapy
- Section III Musician’s Dystonia
- Section IV Psychogenic Dystonia
- Section V Treatment of Paediatric Dystonia
- Section VI Rehabilitation of Dystonia
- Section VII Pharmacotherapy for Dystonia
- Section VIII Surgical Treatment of Dystonia
- Section IX Deep Brain Stimulation for Dystonia
- Section X Emerging Therapies for Dystonia
- Section XI Future Trends in Dystonia Therapy
- Book part
- Index
- References
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.

- Type
- Chapter
- Information
- Treatment of Dystonia , pp. 97 - 192Publisher: Cambridge University PressPrint publication year: 2018
References
References
Careta, MF, Delgado, L and Patriota, R, 2015. Report of allergic reaction after application of botulinum toxin. Aesthet Surg J. 35: NP102–NP105.CrossRefGoogle ScholarPubMed
Eisele, KH, Fink, K, Vey, M and Taylor, HV, 2011. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon. 57: 555–565.CrossRefGoogle ScholarPubMed
Elston, JS and Russell, RW, 1985. Effect of treatment with botulinum toxin on neurogenic blepharospasm. Br Med J (Clin Res Ed). 290: 1857–1859.CrossRefGoogle ScholarPubMed
Fujinaga, Y, Sugawara, Y and Matsumura, T, 2013. Uptake of botulinum neurotoxin in the intestine. Curr Top Microbiol Immunol. 364: 45–59.Google ScholarPubMed
Glogau, R, Blitzer, A, Brandt, F, Kane, M, Monheit, GD and Waugh, JM, 2012. Results of a randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of a botulinum toxin type A topical gel for the treatment of moderate-to-severe lateral canthal lines. J Drugs Dermatol. 11: 38–45.Google ScholarPubMed
Kamin, W, Staubach, P, Klar-Hlawatsch, B and Knuf, M, 2006. Anaphylaxis after vaccination due to hypersensitivity to gelatin. Klin Padiatr. 218: 92–94.CrossRefGoogle ScholarPubMed
Kim, BJ, Kwon, HH, Park, SY, et al., 2014. Double-blind, randomized non-inferiority trial of a novel botulinum toxin A processed from the strain CBFC26, compared with onabotulinumtoxin A in the treatment of glabellar lines. J Eur Acad Dermatol Venereol. 28: 1761–1767.CrossRefGoogle Scholar
Masuyer, G, Chaddock, JA, Foster, KA and Acharya, KR, 2014. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol. 54: 27–51.CrossRefGoogle ScholarPubMed
Pickett, A, 2013. Historical aspects of botulinum toxin used clinically: part I – is that the right serotype? The Botulinum J. 2: 176.CrossRefGoogle Scholar
Pickett, A, 2015. Historical aspects of botulinum toxin used clinically: part II: overcoming resistance. The Botulinum J. doi: https://doi.org/10.1504/TBJ.2015.078134.CrossRefGoogle Scholar
Scott, AB, Rosenbaum, A and Collins, CC, 1973. Pharmacologic weakening of extraocular muscles. Invest Ophthalmol. 12: 924–927.Google ScholarPubMed
References
Antonucci, F, Rossi, C, Gianfranceschi, L, Rossetto, O, Caleo, M (2008) Long-distance retrograde effects of botulinum neurotoxin. A J Neurosci 28:3689–96.Google ScholarPubMed
Binz, T (2013) Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. Curr Top Microbiol Immunol 364:139–157.Google ScholarPubMed
Binz, T, Rummel, A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595.CrossRefGoogle ScholarPubMed
Colasante, C, Rossetto, O, Morbiato, L, Pirazzini, M, Molgó, J, Montecucco, C (2013) Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol Neurobiol 48:120–127.CrossRefGoogle ScholarPubMed
Eisele, KH, Fink, K, Vey, M, Taylor, HV (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57:555–565.CrossRefGoogle ScholarPubMed
Eleopra, R, Tugnoli, V, Quatrale, R, Rossetto, O, Montecucco, C (2004) Different types of botulinum toxin in humans. Mov Disord 8:S53–S59.CrossRefGoogle Scholar
Fischer, A, Montal, M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282: 29604–29611.CrossRefGoogle ScholarPubMed
Gu, S, Rumpel, S, Zhou, J, Strotmeier, J, Bigalke, H, Perry, K, Shoemaker, CB, Rummel, A, Jin, R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977–981.CrossRefGoogle Scholar
Hill, KK, Smith, TJ (2013) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364:1–20.Google ScholarPubMed
Hughes, R, Whaler, BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160:221–233.CrossRefGoogle ScholarPubMed
Johnson, EA, Montecucco, C (2008) Botulism. Handb Clin Neurol 91:333–368.CrossRefGoogle ScholarPubMed
Lacy, DB, Tepp, W, Cohen, A, DasGupta, BR, Stevens, RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902.CrossRefGoogle ScholarPubMed
Lee, K, Gu, S, Jin, L, Le, TT, Cheng, LW, Strotmeier, J, Kruel, AM, Yao, G, Perry, K, Rummel, A, Jin, R (2013) Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 9:e1003690.CrossRefGoogle ScholarPubMed
Masuyer, G, Chaddock, JA, Foster, KA, Acharya, KR (2014) Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 54: 27–51.CrossRefGoogle ScholarPubMed
Mazzocchio, R, Caleo, M (2015) More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:44–61.CrossRefGoogle ScholarPubMed
Montal, M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617.CrossRefGoogle ScholarPubMed
Montecucco, C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317.CrossRefGoogle Scholar
Montecucco, C, Rasotto, MB (2015) On botulinum neurotoxin variability. MBio 6:e02131-14.CrossRefGoogle ScholarPubMed
Pantano, S, Montecucco, C (2014) The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 71:793–811.CrossRefGoogle ScholarPubMed
Pellett, S, Tepp, WH, Whitemarsh, RC, Bradshaw, M, Johnson, EA (2015) In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1–5. Toxicon 107(Pt A):37–42.CrossRefGoogle ScholarPubMed
Pirazzini, M, Bordin, F, Rossetto, O, Shone, CC, Binz, T, Montecucco, C (2013) The thioredoxin reductase–thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett 587:150–155.CrossRefGoogle ScholarPubMed
Pirazzini, M, Azarnia Tehran, D, Zanetti, G, Megighian, A, Scorzeto, M, Fillo, S, Shone, CC, Binz, T, Rossetto, O, Lista, F, Montecucco, C (2014) Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep 8:1870–1878.CrossRefGoogle ScholarPubMed
Pirazzini, M, Azarnia Tehran, D, Leka, O, Zanetti, G, Rossetto, O, Montecucco, C (2016) On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta 1858:467–474.CrossRefGoogle ScholarPubMed
Restani, L, Giribaldi, F, Manich, M, Bercsenyi, K, Menendez, G, Rossetto, O, Caleo, M, Schiavo, G (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8:e1003087.CrossRefGoogle Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12:535–549.CrossRefGoogle ScholarPubMed
Rossetto, O, Pirazzini, M, Montecucco, C (2015) Current gaps in basic science knowledge of botulinum neurotoxin biological actions. Toxicon 107(Pt A):59–63.CrossRefGoogle ScholarPubMed
Rummel, A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol 364:61–90.Google ScholarPubMed
Simpson, L (2013) The life history of a botulinum toxin molecule. Toxicon 68:40–59.CrossRefGoogle ScholarPubMed
Smith, LD, Sugiyama, H (1988) Botulism: The Organism, its Toxins, the Disease. Springfield, IL: C.C. Thomas Publisher.Google Scholar
References
Aoki, KR (2005). Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicol 26:785–793.CrossRefGoogle ScholarPubMed
Byrnes, ML, Thickbroom, GW, Wilson, SA, Sacco, P, Shipman, JM, Stell, R (1998). The corticomotor representation of upper limb muscles in writer’s cramp and changes following botulinum toxin injection. Brain 121:977–988.CrossRefGoogle ScholarPubMed
Caleo, M, Antonucci, F, Restani, L, Mazzocchio, R (2009). A re-appraisal of the central effects of botulinum toxin type A: by what mechanism? J Neurochem 109: 15–24.CrossRefGoogle Scholar
Ce, P (2000). Central effects of botulinum toxin: study of brainstem auditory evoked potentials. Eur J Neurol 7: 747.CrossRefGoogle ScholarPubMed
Ceballos-Baumann, AO, Sheean, G, Passingham, RE, Marsden, CD, Brooks, DJ (1997). Botulinum toxin does not reverse the cortical dysfunction associated with writer’s cramp: a PET study. Brain 120:571–582.CrossRefGoogle Scholar
Conte, A, Fabbrini, G, Belvisi, D, Marsili, K, Di Stasio, F, Berardelli, A (2010). Electrical activation of the orbicularis oculi muscle does not increase the effectiveness of botulinum toxin type A in patients with blepharospasm. Eur J Neurol 17:449–455.CrossRefGoogle Scholar
Eleopra, R, Tugnoli, V, De Grandis, D, Montecucco, C (1998). Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256: 135–138.CrossRefGoogle Scholar
Fascarelli, F, Di Rosa, G, Bisozzi, E, Castelli, E, Santilli, V (2011). Neurophysiological changes induced by the botulinum toxin type A injection in children with cerebral palsy. Eur J Paediat Neurol 15: 59–64.CrossRefGoogle Scholar
Habermann, E (1974). 125I labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptomoses and ascent to spinal cord. Naunyn Schmiedebergs Arch Pharmacol 281: 47–56.CrossRefGoogle ScholarPubMed
Hagenah, R, Bebecke, R, Wiegand, H (1977). Effect of type A botulinum toxin on the cholinergic transmission at the spinal Renshaw cells and on the inhibitory action at Ia inhibitory interneurons. Arch Pharmal 299: 267–272.CrossRefGoogle Scholar
Hamjian, JA, Walker, F (1994). Serial neurophysiological studies of intramuscular botulinum-A toxins in human. Muscle Nerve 17: 1385–1392.CrossRefGoogle Scholar
Kaji, R, Rosako, Y, Suyama, K, Maeda, T, Uechi, Y, Iwasaki, M (2010). Botulinum toxin type A in post-stroke upper limb spasticity. Curr Med Res Opin 26:1983–1992.CrossRefGoogle ScholarPubMed
Kanovský, P, Rosales, RL (2011). Debunking the pathophysiological puzzle of dystonia: with special reference to botulinum toxin therapy. Parkinsonism Relat Disord 17: S11–S14.CrossRefGoogle ScholarPubMed
Kim, DY, Oh, BM, Paik, NJ (2006). Central effect of botulinum toxin A in humans. Int J Neurosci 116(6): 667–680.CrossRefGoogle ScholarPubMed
Kojovic, M, Caronni, A, Bologna, M, Bhatia, K, Rothwell, J, Edwards, M (2011). Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Movement Disord 26(7): 1282–1289.CrossRefGoogle ScholarPubMed
Naumann, M, Reiners, R (1997). Long-latency reflexes of hand muscles in idiopathic focal dystonia and their modification by botulinum toxin. Brain 120: 409–416.CrossRefGoogle ScholarPubMed
Palomar, F, Mir, P (2012). Neurophysiological changes after intramuscular injection of botulinum toxin. Clinic Neurophysiol 123: 54–60.CrossRefGoogle ScholarPubMed
Picelli, A, Lobba, D, Midiri, A, Prandi, P, Melotti, C, Baldessarelli, S, Smania, N (2014). Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clin Rehabil 28(3): 232–242.CrossRefGoogle ScholarPubMed
Pickett, A, Rosales, RL (2011). New trends in the science of botulinum toxin-A as applied in dystonia. Int J Neurosci 121: 22–34.CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E, Burke, D. (2005). The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Priori, A, Berardelli, A, Mercuri, B, Manfredi, M (1995). Physiological effects produced by botulinum toxin treatment of upper limb dystonia: changes in reciprocal inhibition between forearm muscles. Brain 118:801–807.CrossRefGoogle ScholarPubMed
Rosales, RL (2012). Dystonia, spasticity and botulinum toxin therapy: rationale, evidences and clinical context. In: Rosales, RL (Ed.), Dystonia: The Many Facets. Croatia: Intech Open Access Publishers.CrossRefGoogle Scholar
Rosales, RL, Dressler, D (2010). On muscle spindles, dystonia and botulinum toxin. Eur J Neurol 17 (Suppl. 1): 71–80.CrossRefGoogle ScholarPubMed
Rosales, RL, Arimura, K, Takenaga, S, Osame, M (1996). Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 19: 488–496.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Rosales, RL, Dressler, D, Bigalke, H (2006). Pharmacologic differences between botulinum toxins. Eur J Neurol 13: 2–10.CrossRefGoogle Scholar
Rosales, RL, Delos Santos, MM, Ng, AR, Teleg, R, Dantes, M, Lee, LV, Fernandez, HH (2011a). The broadening application of chemodenervation in X-linked dystonia-parkinsonism (part I): muscle afferent block versus botulinum toxin-A in cervical and limb dystonias. Int J Neurosci 121: 35–43.CrossRefGoogle ScholarPubMed
Rosales, RL, Kanovsky, P, Fernandez, HH (2011b). What’s the ‘catch’ in upper-limb post-stroke spasticity: expanding the role of botulinum toxin applications. Parkinsonism Relat Disord 17: S3–S10.CrossRefGoogle ScholarPubMed
Rosales, RL, Kong, KH, Goh, KJ, Kumthornthip, W, Mok, VCT, Delgado-De Los Santos, MM, Chua, KSG, Abdullah, SJF, Zakine, B, Maisonob, P, Magis, A, Wong, KSL (2012). Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabil Neural Repair 26(7): 812–821.CrossRefGoogle ScholarPubMed
Senkarova, Z, Hlustik, P, Otruba, P, Herzig, R, Kanovsky, P (2010). Modulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with botulinum toxin A: an fMRI study. J Neuroimaging 20: 9–15.CrossRefGoogle Scholar
Ward, SR, Lieber, RL (2009). Biological and mechanical pathologies in spastic skeletal muscle: the functional implications of therapeutic toxins. In: Jankovic, J (Ed.), Botulinum Toxin: Therapeutic Clinical Practice and Science. Philadelphia, PA: Saunders.Google Scholar
Wohlfarth, K, Schubert, M, Rothe, B, Elek, J, Dengler, R (2001). Remote F-wave changes after local botulinum toxin application. Clin Neurophysiol 112: 636–640.CrossRefGoogle ScholarPubMed
Yamada, N, Kakuda, W, Kondo, T, Mitani, S, Shimizu, M, Abo, M (2014). Local muscle injection of botulinum toxin type A synergistically improves the beneficial effects of repetitive transcranial magnetic stimulation and intensive occupational therapy in post-stroke patients with spastic upper limb hemiparesis. Eur Neurol 72: 290–298.CrossRefGoogle ScholarPubMed
Zeuner, KE, Knutzen, A, Al-Ali, A, Hallett, M, Deuschl, G, Bergmann, TO (2010). Associative stimulation of the supraorbital nerve fails to induce timing-specific plasticity in the human blink reflex. PLoS One 5:13602–13614.CrossRefGoogle ScholarPubMed
References
Antonucci, F, Rossi, C, Gianfranceschi, L, Rossetto, O, Caleo, M (2008). Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696.CrossRefGoogle ScholarPubMed
Aymard, C, Giboin, LS, Lackmy-Vallee, A, Marchand-Pauvert, V (2013). Spinal plasticity in stroke patients after botulinum neurotoxin A injection in ankle plantar flexors. Physiol Rep 1:e00173.CrossRefGoogle ScholarPubMed
Bomba-Warczak, E, Vevea, JD, Brittain, JM, Figueroa-Bernier, A, Tepp, WH, Johnson, EA, Yeh, FL, Chapman, ER (2016). Interneuronal transfer and distal action of tetanus toxin and botulinum neurotoxins A and D in central neurons. Cell Rep 16:1974–1987.CrossRefGoogle Scholar
Brink, EE, Suzuki, I (1987). Recurrent inhibitory connexions among neck motoneurones in the cat. J Physiol 383:301–326.CrossRefGoogle ScholarPubMed
Giladi, N (1997). The mechanism of action of botulinum toxin type A in focal dystonia is most probably through its dual effect on efferent (motor) and afferent pathways at the injected site. J Neurol Sci 152:132–135.CrossRefGoogle ScholarPubMed
Hallett, M (2011). Neurophysiology of dystonia: the role of inhibition. Neurobiol Dis 42:177–184.CrossRefGoogle ScholarPubMed
Koizumi, H, Goto, S, Okita, S, Morigaki, R, Akaike, N, Torii, Y, Harakawa, T, Ginnaga, A, Kaji, R (2014). Spinal central effects of peripherally applied botulinum neurotoxin A in comparison between its subtypes A1 and A2. Front Neurol 5:98.CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V, Iglesias, C (2008). Properties of human spinal interneurones: normal and dystonic control. J Physiol 586:1247–1256.CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V, Aymard, C, Giboin, LS, Dominici, F, Rossi, A, Mazzocchio, R (2013). Beyond muscular effects: depression of spinal recurrent inhibition after botulinum neurotoxin A. J Physiol 591:1017–1029.CrossRefGoogle ScholarPubMed
Matak, I, Lackovic, Z (2014). Botulinum toxin A, brain and pain. Prog Neurobiol 119–120:39–59.CrossRefGoogle ScholarPubMed
Matsuo, K, Ban, R, Ban, M, Yuzuriha, S (2014). Trigeminal proprioception evoked by strong stretching of the mechanoreceptors in Muller’s muscle induces reflex contraction of the orbital orbicularis oculi slow-twitch muscle fibers. Eplasty 14:e30.Google ScholarPubMed
Mazzocchio, R, Caleo, M (2015). More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:44–61.CrossRefGoogle ScholarPubMed
Moreno-Lopez, B, Pastor, AM, de la Cruz, RR, Delgado-Garcia, JM (1997). Dose-dependent, central effects of botulinum neurotoxin type A: a pilot study in the alert behaving cat. Neurology 48:456–464.CrossRefGoogle ScholarPubMed
Pastor, AM, Moreno-Lopez, B, De La Cruz, RR, Delgado-Garcia, JM (1997). Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience 81:457–478.CrossRefGoogle ScholarPubMed
Priori, A, Berardelli, A, Mercuri, B, Manfredi, M (1995). Physiological effects produced by botulinum toxin treatment of upper limb dystonia: changes in reciprocal inhibition between forearm muscles. Brain 118 (Pt 3):801–807.CrossRefGoogle ScholarPubMed
Ramachandran, R, Lam, C, Yaksh, TL (2015). Botulinum toxin in migraine: role of transport in trigemino-somatic and trigemino-vascular afferents. Neurobiol Dis 79:111–122.CrossRefGoogle ScholarPubMed
Restani, L, Giribaldi, F, Manich, M, Bercsenyi, K, Menendez, G, Rossetto, O, Caleo, M, Schiavo, G (2012a). Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8:e1003087.CrossRefGoogle Scholar
Restani, L, Novelli, E, Bottari, D, Leone, P, Barone, I, Galli-Resta, L, Strettoi, E, Caleo, M (2012b). Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport. Traffic 13:1083–1089.CrossRefGoogle ScholarPubMed
Rossetto, O, Pirazzini, M, Montecucco, C (2015). Current gaps in basic science knowledge of botulinum neurotoxin biological actions. Toxicon 107(Pt A):59–63.CrossRefGoogle ScholarPubMed
Salinas, S, Schiavo, G, Kremer, EJ (2010). A hitchhiker’s guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol 8:645–655.CrossRefGoogle ScholarPubMed
Valls-Sole, J, Tolosa, ES, Ribera, G (1991). Neurophysiological observations on the effects of botulinum toxin treatment in patients with dystonic blepharospasm. J Neurol Neurosurg Psychiatry 54:310–313.CrossRefGoogle ScholarPubMed
Verderio, C, Pozzi, D, Pravettoni, E, Inverardi, F, Schenk, U, Coco, S, Proux-Gillardeaux, V, Galli, T, Rossetto, O, Frassoni, C, Matteoli, M (2004). SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610.CrossRefGoogle ScholarPubMed
Wang, T, Martin, S, Papadopulos, A, Harper, CB, Mavlyutov, TA, Niranjan, D, Glass, NR, Cooper-White, JJ, Sibarita, JB, Choquet, D, Davletov, B, Meunier, FA (2015). Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J Neurosci 35:6179–6194.CrossRefGoogle ScholarPubMed
References
Agafonova, NV, Khasanova, DR (2014) [The use of different doses of botulotoxin A in the treatment of early arm poststroke spasticity]. [Article in Russian] Zh Nevrol Psikhiatr Im S S Korsakova 114: 68–71.Google Scholar
Aoki, R (2002) Botulinum neurotoxin serotypes A and B preparations have different safety margins in preclinical models of muscle weakening efficacy and systemic safety. Toxicon 40: 923–928.CrossRefGoogle Scholar
Arnouk, R, Suzuki Bellucci, C, Benatuil Stull, R, de Bessa, J, Malave, C, Gomes, C (2012) Botulinum neurotoxin type A for the treatment of benign prostatic hyperplasia: randomized study comparing two doses. Sci World J 2012: 463574.Google ScholarPubMed
Bach-Rojecky, L, Lacković, Z (2005) Antinociceptive effect of botulinum toxin type A in rat model of carrageenan and capsaicin induced pain. Croat Med J 46: 201–208.Google ScholarPubMed
Bach-Rojecky, L, Lacković, Z (2009) Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav 94(2): 234–238. doi: 10.1016/j.pbb.2009.08.012.CrossRefGoogle ScholarPubMed
Basciani, M, DiRienzo, F, Fontana, A, Copetti, M, Pellegrini, F, Intiso, D (2011) Botulinum toxin type B for sialorrhoea in children with cerebral palsy: a randomized trial comparing three doses. Dev Med Child Neurol 53: 559–564.CrossRefGoogle ScholarPubMed
Bittencourt da Silva, L, Karshenas, A, Bach, F, Rasmussen, S, Arendt-Nielsen, L, Gazerani, P (2014) Blockade of glutamate release by botulinum neurotoxin type A in humans: a dermal microdialysis study. Pain Res Manag 19: 126–132.CrossRefGoogle ScholarPubMed
Camargo, C, Cattai, L, Teive, H (2015) Pain relief in cervical dystonia with botulinum toxin treatment. Toxins (Basel) 7: 2321–2335.CrossRefGoogle ScholarPubMed
Cui, M, Khanijou, S, Rubino, J, Aoki, K (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107: 125–133.CrossRefGoogle ScholarPubMed
Currà, A, Berardelli, A (2009) Do the unintended actions of botulinum toxin at distant sites have clinical implications? Neurology 72:1095–1099.CrossRefGoogle ScholarPubMed
Dodick, D, Turkel, C, DeGryse, R, Aurora, S, Silberstein, S, Lipton, R, Diener, H, Brin, MF, PREEMPT Chronic Migraine Study Group (2010) OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind randomized placebo-controlled phases of the PREEMPT clinical program. Headache 50: 921–936.CrossRefGoogle ScholarPubMed
Dressler, D, Adib Saberi, F (2013) Towards a dose optimisation of botulinum toxin therapy for axillary hyperhidrosis: comparison of different Botox doses. J Neural Transm 120: 1565–1567.CrossRefGoogle ScholarPubMed
Dressler, D, Benecke, R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49: 34–38.CrossRefGoogle ScholarPubMed
Dressler, D, Eleopra, R (2006) Clinical use of non-A botulinum toxins: botulinum toxin type B. Neurotox Res 9: 121–125.CrossRefGoogle ScholarPubMed
Fedorowicz, Z, van Zuuren, E, Schoones, J (2013) Botulinum toxin for masseter hypertrophy. Cochrane Database of Systematic Reviews 9(9): CD007510.Google Scholar
Göbel, H, Heinze, A, Reiche, G, Hefter, H, Benecke, R, Dysport Myofascial Pain Study Group (2006) Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport) for the relief of upper back myofascial pain syndrome: results from a randomized double-blind placebo-controlled multicentre study. Pain 125: 82–88.CrossRefGoogle ScholarPubMed
Hu, Y, Guan, X, Fan, L, Li, M, Liao, Y, Nie, Z, Jin, L (2013) Therapeutic efficacy and safety of botulinum toxin type A in trigeminal neuralgia: a systematic review. J Headache Pain 14: 72.CrossRefGoogle ScholarPubMed
Intiso, D, Basciani, M, Santamato, A, Intiso, M, Di Rienzo, F (2015) Botulinum toxin type A for the treatment of neuropathic pain in neuro-rehabilitation. Toxins 7: 2454–2480.CrossRefGoogle ScholarPubMed
Kollewe, K, Mohammadi, B, Köhler, S, Pickenbrock, H, Dengler, R, Dressler, D (2015) Blepharospasm: long-term treatment with either Botox® Xeomin® or Dysport®. J Neural Transm 122: 427–431.CrossRefGoogle Scholar
Langevin, P, Peloso, PM, Lowcock, J, Nolan, M, Weber, J, Gross, A, Roberts, J, Goldsmith, CH, Graham, N, Burnie, SJ, Haines, T (2011) Botulinum toxin for subacute/chronic neck pain. Cochrane Database Syst Rev 7: CD008626.Google Scholar
Marino, MJ, Terashima, T, Steinauer, JJ, Eddinger, KA, Yaksh, TL, Xu, Q (2014) Botulinum toxin B in the sensory afferent: transmitter release spinal activation and pain behavior. Pain 155: 674–684.CrossRefGoogle ScholarPubMed
Matak, I, Lacković, Z (2014) Botulinum toxin A brain and pain. Prog Neurobiol 119–120: 39–59.CrossRefGoogle ScholarPubMed
Matak, I, Lacković, Z (2015) Botulinum neurotoxin type A: actions beyond SNAP-25. Toxicology 335: 79–84.CrossRefGoogle ScholarPubMed
Mense, S (2004) Neurobiological basis for the use of botulinum toxin in pain therapy. J Neurol 251(Suppl. 1): 1–7.CrossRefGoogle ScholarPubMed
Relja, M, Klepac, N (2002) Different doses of botulinum toxin A and pain responsiveness in cervical dystonia. Neurology 58: A474.Google Scholar
Relja, M, Poole, AC, Schoenen, J, Pascual, J, Lei, X, Thompson, C, European BoNTA Headache Study Group (2007) A multicentre double-blind randomized placebo-controlled parallel group study of multiple treatments of botulinum toxin type A (BoNTA) for the prophylaxis of episodic migraine headaches. Cephalalgia 27: 492–503.CrossRefGoogle ScholarPubMed
Singh, JA, Fitzgerald, PM (2011) Botulinum toxin for shoulder pain: a Cochrane systematic review. J Rheumatol 38(3): 409–418.CrossRefGoogle ScholarPubMed
Soares, A, Andriolo, RB, Atallah, AN, da Silva, EM (2012) Botulinum toxin for myofascial pain syndromes in adults. Cochrane Database Syst Rev 4: CD007533.Google Scholar
Tsui, JK, Eisen, A, Stoessl, AJ, Calne, S, Calne, DB (1986) Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 2: 245–247.CrossRefGoogle ScholarPubMed
Waseem, Z, Boulias, C, Gordon, A, Ismail, F, Sheean, G, Furlan, AD (2010) Botulinum toxin injections for low-back pain and sciatica. Cochrane Database Syst Rev 1: CD008257.Google Scholar
Winocour, S, Murad, MH, Bidgoli-Moghaddam, M, Jacobson, SR, Bite, U, Saint-Cyr, M, Tran, NV, Lemaine, V (2014) Systematic review of the use of botulinum toxin type A with subpectoral breast implants. J Plast Reconstr Aesthet Surg 67: 34–41.CrossRefGoogle ScholarPubMed
Wu, T, Fu, Y, Song, HX, Ye, Y, Dong, Y, Li, JH (2015) Effectiveness of botulinum toxin for shoulder pain treatment: a systematic review and meta-analysis. Arch Phys Med Rehabil 16(15).Google Scholar
Zhang, H, Lian, Y, Ma, Y, Chen, Y, He, C, Xie, N, Wu, C (2014) Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: observation of therapeutic effect from a randomized double-blind placebo-controlled trial. J Headache Pain 15: 65.CrossRefGoogle ScholarPubMed
References
Borodic, G, Johnson, EA, Goodnough, MC, Schantz, EJ (1996) Botulinum toxin therapy, immunologic resistance, and problems with available materials. Neurology 46: 26–29.CrossRefGoogle ScholarPubMed
Brashear, A (2001) Botulinum toxin type B: a new injectable treatment for cervical dystonia. Expert Opin Invest Drugs 10: 2191–2199.CrossRefGoogle ScholarPubMed
Burgen, ASV, Dickens, F, Zatman, LF (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109: 10–24.CrossRefGoogle ScholarPubMed
DasGupta, BR (1989) The structure of botulinum neurotoxin. In: Simpson, LL, ed., Botulinum Neurotoxin and Tetanus Toxin. San Diego, ca, Academic Press, pp. 53–67.CrossRefGoogle Scholar
Drachman, DB (1971) Botulinum toxin as a tool for research on the nervous system. In: Simpson, LL, ed., Neuropoisons: Their Pathophysiological Actions. Vol. 1. Poisons of Animal Origin. New York, Plenum Press, pp. 325–347.CrossRefGoogle Scholar
Frevert, J (2015) Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D 15: 1–9.CrossRefGoogle ScholarPubMed
Geigert, J (2013) The Challenge of CMC Regulatory Compliance for Biopharmaceuticals. New York, Springer-Verlag.CrossRefGoogle Scholar
Hambleton, P, Capel, B, Bailey, N, Heron, N, Crooks, A, Melling, J, Tse, C-K, Dolly, JO (1981) Production, purification and toxoiding of Clostridium botulinum type A toxin. In: Lewis, GE, ed., Biomedical Aspects of Botulism. New York, Academic Press, pp. 247–260.CrossRefGoogle Scholar
Hatheway, CL, Johnson, EA (1998) Clostridium: the spore-bearing anaerobes. In: Collier, L, Balows, A, Sussman, M, eds, Topley and Wilson’s Microbiology and Microbial Infections, ninth edition, Vol. 2: Systematic Bacteriology. London, Arnold, pp. 731–782.Google Scholar
Hill, KK, Xie, G, Foley, BT, Smith, TJ (2015) Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 107 (Pt A): 2–8.CrossRefGoogle ScholarPubMed
Hutson, RA, Zhou, Y, Johnson, EA, Sugiyama, H, Hatheway, CL (1996) Genetic characterization of Clostridium botulinum type A containing silent B neurotoxin gene sequences. J Biol Chem 271: 10786–10792.CrossRefGoogle ScholarPubMed
Johnson, EA (1999) Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Ann Rev Microbiol 53: 551–575.CrossRefGoogle ScholarPubMed
Malizio, CJ, Goodnough, MC, Johnson, EA (2000) Purification of Clostridium botulinum type A neurotoxin. In: Holst, O, ed., Bacterial Toxins: Methods and Protocols. New Jersey, Humana Press.Google Scholar
Panjwani, N, O’Keefe, RO, Pickett, A (2008) Biochemical, functional and potency characteristics of type A botulinum toxin in clinical use. The Botulinum J 1: 153–166.CrossRefGoogle Scholar
Pickett, A (2014) Botulinum toxin as a clinical product: manufacture and pharmacology. In: Foster, KA, ed., Clinical Applications of Botulinum Neurotoxin. New York, Springer, pp. 7–49.CrossRefGoogle Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12: 535–549.CrossRefGoogle ScholarPubMed
Sakaguchi, G (1982) Clostridium botulinum toxins. Pharmacol Ther 19: 165–194.CrossRefGoogle ScholarPubMed
Schantz, EJ, Johnson, EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56: 80–92.Google Scholar
Scott, AB (1981) Botulinum toxin injection of eye muscles to correct strabismus. Trans Am Ophtthalmol Soc 79: 734–770.Google ScholarPubMed
Scott, AB (1989) Clostridial toxins as therapeutic agents. In: Simpson, LL, ed., Botulinum Neurotoxin and Tetanus Toxin. San Diego, CA, Academic Press, pp. 399–412.CrossRefGoogle Scholar
Scott, AB, Rosenbaum, A, Collins, CC (1973) Pharmacologic weakening of extraocular muscles. Invest Opthamol 12: 924–927.Google ScholarPubMed
Wortzman, MS, Pickett, A (2009) The science and manufacturing behind botulinum neurotoxin type A-ABO in clinical use. Aesthet Surg J 29: S34–S42.CrossRefGoogle ScholarPubMed
References
Antonucci, F, Rossi, C, Gianfranceschi, L, Rossetto, O, Caleo, M (2008) Long-distance retrograde effects of botulinum neurotoxin. A J Neurosci 28:3689–3696.CrossRefGoogle ScholarPubMed
Aurora, SK, Dodick, DW, Diener, HC, DeGryse, RE, Turkel, CC, Lipton, RB, Silberstein, SD (2014) OnabotulinumtoxinA for chronic migraine: efficacy, safety, and tolerability in patients who received all five treatment cycles in the PREEMPT clinical program. Acta Neurol Scand 129:61–70.CrossRefGoogle ScholarPubMed
Beard, M (2014) Translocation, entry into the cell. In: Foster, KA (ed.) Molecular Aspects of Botulinum Neurotoxin. New York: Springer; pp151–170.CrossRefGoogle Scholar
Brin, MF, Dressler, D, Aoki, R (2004) Pharmacology of botulinum toxin therapy. In: Jankovic, J, Comella, C, Brin, MF (eds) Dystonia: Etiology, Clinical Features, and Treatment. Philadelphia, PA: Lippincott Williams & Wilkins; pp93–112.Google Scholar
Brin, MF, James, C, Maltman, J (2014) Botulinum toxin type A products are not interchangeable: a review of the evidence. Biologics 8:227–241.Google ScholarPubMed
de Paiva, A, Meunier, FA, Molgo, J, Aoki, KR, Dolly, JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA 96:3200–3205.CrossRefGoogle ScholarPubMed
Dressler, D, Benecke, R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:34–38.CrossRefGoogle ScholarPubMed
Dressler, D, Rothwell, JC (2000) Electromyographic quantification of the paralysing effect of botulinum toxin. Eur Neurol 43:13–16.CrossRefGoogle ScholarPubMed
Dressler, D, Eckert, J, Kukowski, B, Meyer, BU (1993) Somatosensorisch Evozierte Potentiale bei Schreibkrampf: Normalisierung pathologischer Befunde unter Botulinum Toxin Therapie. Z EEG EMG 24:191.Google Scholar
Dressler, D, Rothwell, JC, Bigalke, H (2000) The sternocleidomastoid test: an in-vivo assay to investigate botulinum toxin antibody formation in man. J Neurol 247:630–632.CrossRefGoogle Scholar
Dressler, D, Adib Saberi, F, Benecke, R (2002) Botulinum toxin type B for treatment of axillar hyperhidrosis. J Neurol 249:1729–1732.CrossRefGoogle ScholarPubMed
Dressler, D, Saberi, FA, Kollewe, K, Schrader, C (2015) Safety aspects of incobotulinumtoxinA high-dose therapy. J Neural Transm 122:327–333.CrossRefGoogle ScholarPubMed
Eleopra, R, Tugnoli, V, Rossetto, O, De Grandis, D, Montecucco, C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Letts 256:135–138.CrossRefGoogle Scholar
Fernández-Salas, E, Wang, J, Molina, Y, Nelson, JB, Jacky, BP, Aoki, KR (2012) Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS One 7:e49516.CrossRefGoogle ScholarPubMed
Filippi, GM, Errico, P, Santarelli, R, Bagolini, B, Manni, E (1993) Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 113:400–404.CrossRefGoogle ScholarPubMed
Foster, KA (2004) The analgesic potential of clostridial neurotoxin derivatives. Expert Opin Investig Drugs 13:1437–1443.CrossRefGoogle ScholarPubMed
Girlanda, P, Vita, G, Nicolosi, C, Milone, S, Messina, C (1992) Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. J Neurol Neurosurg Psychiatry 55:844–845.CrossRefGoogle ScholarPubMed
Hallett, M (2015) Explanation of timing of botulinum neurotoxin effects, onset, duration, and clinical ways of influencing them. Toxicon 107:64–67.CrossRefGoogle Scholar
Jabbari, B, Machado, DG (2014) Clinical use of botulinum neurotoxins: pain. In: Foster, KA (ed.) Clinical Applications of Botulinum Neurotoxin. New York: Springer; pp153–176.CrossRefGoogle Scholar
Johnson, EA, Pellett, S, Whitemarsh, RCM, Tepp, WH (2013) Compositions and methods for toxigenicity testing. International Patent Application PCT/US2012/057825.
Kaji, R, Kohara, N, Katayama, M, Kubori, T, Mezaki, T, Shibasaki, H, Kimura, J (1995a) Muscle afferent block by intramuscular injection of lidocaine for the treatment of writer’s cramp. Muscle Nerve 18:234–235.CrossRefGoogle ScholarPubMed
Kaji, R, Rothwell, JC, Katayama, M, Ikeda, T, Kubori, T, Kohara, N, Mezaki, T, Shibasaki, H, Kimura, J (1995b) Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann Neurol 38:155–162.CrossRefGoogle ScholarPubMed
Keller, JE (2006) Recovery from botulinum neurotoxin poisoning in vivo. Neurosci 139:629–637.CrossRefGoogle ScholarPubMed
Kollewe, K, Escher, C, Fathi, D, Wulff, DU, Paracka, L, Mohammadi, B, Karst, M, Dressler, D (2016) Long-term treatment of chronic migraine with onabotulinumtoxinA: efficacy, quality of life and tolerability in a real-life setting. J Neural Transm 123:533–540.CrossRefGoogle Scholar
Lange, DJ, Brin, MF, Warner, CL, Fahn, S, Lovelace, RE (1987) Distant effects of local injection of botulinum toxin. Muscle Nerve 10:552–555.CrossRefGoogle ScholarPubMed
Mazzocchio, R, Caleo, M (2015) More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:44–61.CrossRefGoogle ScholarPubMed
Pellizzari, R, Rossetto, O, Schiavo, G, Montecucco, C (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 354:259–268.CrossRefGoogle ScholarPubMed
Peng, L, Tepp, WH, Pitkin, RM, Johnson, EA, Stenmark, P, Dong, M (2012) Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 125:3233–3242.CrossRefGoogle Scholar
Rosales, RL, Arimura, K, Takenaga, S, Osame, M (1996) Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 19:488–496.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Rummel, A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol 364:61–90.Google ScholarPubMed
Schiavo, G, Matteoli, M, Montecucco, C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766.CrossRefGoogle ScholarPubMed
Strotmeier, J, Willjes, G, Binz, T, Rummel, A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586:310–313.CrossRefGoogle ScholarPubMed
Tsai, YC, Moller, BE, Adler, M, Oyler, GA (2014) Molecular basis for persistence of botulinum neurotoxin: the role of intracellular protein degradation pathways. In: Foster, KA (ed.) Molecular Aspects of Botulinum Neurotoxin. New York: Springer; pp191–206.CrossRefGoogle Scholar
Wohlfahrt, K, Sycha, T, Ranoux, D, Naver, H, Caird, D (2009) Dose equivalence of two commercial preparations of botulinum neurotoxin type A: time for a reassessment? Curr Med Res Opin 25:1573–1584.CrossRefGoogle Scholar
References
Biglan, AW, Gonnering, R, Lockhart, LB, Rabin, B, Fuerste, FH (1986) Absence of antibody production in patients treated with botulinum A toxin. Am J Ophthalmol 101:232–235.CrossRefGoogle ScholarPubMed
Birklein, F, Walther, D, Bigalke, H, Winterholler, M, Erbguth, F (2002) Sudomotor testing predicts the presence of neutralizing botulinum A toxin antibodies. Ann Neurol 52:68–73.CrossRefGoogle ScholarPubMed
Dressler, D (2000b) Complete secondary botulinum toxin therapy failure in blepharospasm. J Neurol 247:809–810.CrossRefGoogle ScholarPubMed
Dressler, D (2004a) New formulation of BOTOX®: complete antibody-induced therapy failure in hemifacial spasm. J Neurol 251:360.CrossRefGoogle Scholar
Dressler, D (2004b) Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov Disord 19 (Suppl. 8):S92–S100.CrossRefGoogle ScholarPubMed
Dressler, D (2012) Five-year experience with incobotulinumtoxinA (Xeomin®): the first botulinum toxin drug free of complexing proteins. Eur J Neurol 19:385–389.CrossRefGoogle ScholarPubMed
Dressler, D, Adib Saberi, F (2016) Immunological safety of incobotulinumtoxinA (Xeomin®) therapy with reduced interinjection intervals. J Neural Transm 122:327–333.CrossRefGoogle Scholar
Dressler, D, Bigalke, H (2002) Botulinum toxin antibody titres after cessation of botulinum toxin therapy. Mov Disord 17:170–173.CrossRefGoogle ScholarPubMed
Dressler, D, Dirnberger, G (2000) Botulinum toxin therapy: risk factors for therapy failure. Mov Disord 15 (Suppl. 2):51.Google Scholar
Dressler, D, Foster, K (in press) Pharmacology of botulinum toxins. In: Dressler, D, Altenmüller, E, Krauss, JK (eds) Treatment of Dystonia. Cambridge: Cambridge University Press.
Dressler, D, Zettl, U, Bigalke, H, Benecke, R (2000a) Can intravenous immunoglobulin improve antibody mediated botulinum toxin therapy failure? Mov Disord 15:1279–1281.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Dressler, D, Dirnberger, G, Bhatia, K, Quinn, NP, Irmer, A, Bigalke, H, Marsden, CD (2000b) Botulinum toxin antibody testing: comparison between the mouse diaphragm bioassay and the mouse lethality bioassay. Mov Disord 15:973–976.3.0.CO;2-X>CrossRefGoogle Scholar
Dressler, D, Bigalke, H, Rothwell, JC (2000c) The sternocleidomastoid test: an in-vivo assay to investigate botulinum toxin antibody formation in man. J Neurol 247:630–632.CrossRefGoogle Scholar
Dressler, D, Muenchau, A, Bhatia, KP, Quinn, NP, Bigalke, H (2002) Antibody induced botulinum toxin therapy failure: can it be overcome by increased botulinum toxin doses? Eur Neurol 47:118–121.CrossRefGoogle ScholarPubMed
Dressler, D, Benecke, R, Bigalke, H (2003) Botulinum toxin type B (NeuroBloc®) in patients with botulinum toxin type A antibody-induced therapy failure. J Neurol 250:967–969.CrossRefGoogle Scholar
Dressler, D, Wohlfahrt, K, Meyer-Rogge, E, Wiest, L, Bigalke, H (2010) Antibody-induced failure of botulinum toxin a therapy in cosmetic indications. Dermatol Surg 36 (Suppl. 4):2182–2187.CrossRefGoogle ScholarPubMed
Dressler, D, Adib Saberi, F, Kollewe, K, Schrader, C (2014a) Safety aspects of incobotulinumtoxinA high dose therapy. J Neural Transm 122:327–333.CrossRefGoogle ScholarPubMed
Dressler, D, Gessler, F, Tacik, P, Bigalke, H (2014b) An enzyme-linked immunosorbent assay for detection of botulinum toxin-antibodies. Mov Disord 29:1322–1324.CrossRefGoogle ScholarPubMed
Dressler, D, Altenmueller, E, Bhidayasiri, R, Bohlega, S, Chana, P, Chung, TM, Frucht, S, Garcia-Ruiz, PJ, Kaelin, A, Kaji, R, Kanovsky, P, Laskawi, R, Micheli, F, Orlova, O, Relja, M, Rosales, R, Slawek, J, Timerbaeva, S, Warner, TT, Saberi, FA (2015) Strategies for treatment of dystonia. J Neural Transm (epub ahead of printing).Google ScholarPubMed
Duane, DD, Monroe, J, Morris, RE (2000) Mycophenolate in the prevention of recurrent neutralizing botulinum toxin A antibodies in cervical dystonia. Mov Disord 15:365–366.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Frevert, J, Dressler, D (2010) Complexing proteins in botulinum toxin type A drugs: a help or a hindrance? Biologics 4:325–332.Google ScholarPubMed
Gonnering, RS (1988) Negative antibody response to long-term treatment of facial spasm with botulinum toxin. Am J Ophthalmol 105:313–315.CrossRefGoogle ScholarPubMed
Greene, PE, Fahn, S (1993) Use of botulinum toxin type F injections to treat torticollis in patients with immunity to botulinum toxin type A. Mov Disord 8:479–483.CrossRefGoogle ScholarPubMed
Greene, P, Fahn, S, Diamond, B (1994) Development of resistance to botulinum toxin type A in patients with torticollis. Mov Disord 9:213–217.CrossRefGoogle ScholarPubMed
Hanna, PA, Jankovic, J (1998) Mouse bioassay versus Western blot assay for botulinum toxin antibodies: correlation with clinical response. Neurology 50:1624–1629.CrossRefGoogle ScholarPubMed
Jankovic, J, Schwartz, K (1995) Response and immunoresistance to botulinum toxin injections. Neurology 45:1743–1746.CrossRefGoogle ScholarPubMed
Kessler, KR, Benecke, R (1997) The EBD test: a clinical test for the detection of antibodies to botulinum toxin type A. Mov Disord 12:95–99.CrossRefGoogle ScholarPubMed
Naumann, M, Toyka, KV, Mansouri Taleghani, B, Ahmadpour, J, Reiners, K, Bigalke, H (1998) Depletion of neutralising antibodies resensitises a secondary non-responder to botulinum A neurotoxin. J Neurol Neurosurg Psychiat 65:924–927.CrossRefGoogle ScholarPubMed
Rossetto, O, Pirazzini, M, Montecucco, C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12:535–549.CrossRefGoogle ScholarPubMed
Voller, B, Moraru, E, Auff, E, Benesch, M, Poewe, W, Wissel, J, Müller, J, Entner, T, Bigalke, H, Schnider, P (2004) Ninhydrin sweat test: a simple method for detecting antibodies neutralizing botulinum toxin type A. Mov Disord 19:943–947.CrossRefGoogle ScholarPubMed
References
Anderson, J, Williams, PT, Katos, AM, et al. 2009. Botulinum toxins. In Gupta, RC, ed., Handbook of Toxicology of Chemical Warfare Agents. Amsterdam: Elsevier BV: 407–432.CrossRefGoogle Scholar
Chen, R, Karp, BI, Hallett, M. 1998. Botulinum toxin type F for treatment of dystonia: long-term experience. Neurology 51:1494–1496.CrossRefGoogle ScholarPubMed
Coffield, JA, Bakry, N, Zhang, RD, et al. 1997. In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J Pharmacol Exp Ther 280:1489–1498.Google Scholar
Eleopra, R, Tugnoli, V, Rossetto, O, et al. 1997. Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224: 91–94.CrossRefGoogle ScholarPubMed
Eleopra, R, Tugnoli, V, Rossetto, O, et al. 1998. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256: 135–138.CrossRefGoogle Scholar
Eleopra, R, Tugnoli, V, Quatrale, R, et al. 2002. Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clin Neurophysiol 113: 1258–1264.CrossRefGoogle Scholar
Eleopra, R, Tugnoli, V, Quatrale, R, et al. 2004. Different types of botulinum toxin in humans. Mov Disord 19 (Suppl. 8):S53–S59.CrossRefGoogle ScholarPubMed
Eleopra, R, Tugnoli, V, Quatrale, R, et al. 2006. Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9:127–131.CrossRefGoogle ScholarPubMed
Eleopra, R, Montecucco, C, Devigili, G, et al. 2013. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study. Clin Neurophysiol 124: 999–1004.CrossRefGoogle Scholar
Greene, PE, Fahn, S. 1993. Use of botulinum toxin type F injections to treat torticollis in patients with immunity to botulinum toxin type A. Mov Disord 8:479–483.CrossRefGoogle ScholarPubMed
Greene, PE, Fahn, S. 1996. Response to botulinum toxin F in seronegative botulinum toxin A-resistant patients. Mov Disord 11:181–184.CrossRefGoogle ScholarPubMed
Hallett, M. 2000. How does botulinum toxin work? Ann Neurol 48:7–8.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Jankovic, J. 2004. Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiat 75:951–957.CrossRefGoogle ScholarPubMed
Johnson, EA, Montecucco, C. 2008. Botulism. In: Engel, AG, ed., Neuromuscular Junction Disorders: Handbook of Clinical Neurology. Amsterdam: Elsevier: 333–368.CrossRefGoogle Scholar
Ludlow, CL, Hallett, M, Rhew, K, et al. 1992. Therapeutic use of type F botulinum toxin. N Engl J Med 326:349–350.Google ScholarPubMed
Mezaki, T, Kaji, R, Brin, MF, et al. 1999. Combined use of type A and F botulinum toxins for blepharospasm: a double-blind controlled trial. Mov Disord 14:1017–1020.3.0.CO;2-3>CrossRefGoogle Scholar
Rossetto, O, Pirazzini, M, Montecucco, C. 2014. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nature 12:535–549.Google ScholarPubMed
Smith, LD, Sugiyama, H. 1988. Botulism: The Organism, its Toxins, the Disease. Springfield, IL: C.C. Thomas Publ.Google Scholar
References
Berweck, S, Feldkamp, A, Francke, A, Nehles, J, Schwerin, A, Heinen, F (2002) Sonography-guided injection of botulinum toxin A in children with cerebral palsy. Neuropediatrics 33:221–223.CrossRefGoogle ScholarPubMed
Boon, AJ, Oney-Marlow, TM, Murthy, NS, Harper, CM, McNamara, TR, Smith, J (2011) Accuracy of electromyography needle placement in cadavers: non-guided vs. ultrasound guided. Muscle Nerve 44:45–49.CrossRefGoogle ScholarPubMed
Fujimoto, H, Mezaki, T, Yokoe, M, Mochizuki, H (2012) Sonographic guidance provides a low-risk approach to the longus colli muscle. Mov Disord 27:928–929.CrossRefGoogle ScholarPubMed
Gervasio, A, Mujahed, I, Biasio, A, Alessi, S (2010) Ultrasound anatomy of the neck: the infrahyoid region. J Ultrasound 13:85–89.CrossRefGoogle ScholarPubMed
Hobson-Webb, LD, Boon, AJ (2013) Reporting the results of diagnostic neuromuscular ultrasound: an educational report. Muscle Nerve 47:608–610.CrossRefGoogle Scholar
Hong, JS, Sathe, GG, Niyonkuru, C, Munin, MC (2012) Elimination of dysphagia using ultrasound guidance for botulinum toxin injections in cervical dystonia. Muscle Nerve 46:535–539.CrossRefGoogle ScholarPubMed
Huang, L, Chen, HX, Ding, XD, Xiao, HQ, Wang, W, Wang, H (2015) Efficacy analysis of ultrasound-guided local injection of botulinum toxin type A treatment with orthopedic joint brace in patients with cervical dystonia. Eur Rev Med Pharmacol Sci 19:1989–1993.Google Scholar
Kopf, H, Mostbeck, GH, Loizides, A, Gruber, H (2011) Ultrasound-guided interventions at peripheral nerves: diagnostic and therapeutic indications. Ultraschall Med 32:440–456.CrossRefGoogle ScholarPubMed
Lee, IH, Yoon, YC, Sung, DH, Kwon, JW, Jung, JY (2009) Initial experience with imaging-guided intramuscular botulinum toxin injection in patients with idiopathic cervical dystonia. AJR Am J Roentgenol 192:996–1001.CrossRefGoogle ScholarPubMed
Lim, EC, Quek, AM, Seet, RC (2011) Accurate targeting of botulinum toxin injections: how to and why. Parkinsonism Relat Disord 17 (Suppl. 1):S34–39.CrossRefGoogle Scholar
Mezaki, T, Matsumoto, S, Sakamoto, T, Mizutani, K, Kaji, R (2000) Cervical echomyography in cervical dystonia and its application to the monitoring for muscle afferent block (MAB). Rinsho Shinkeigaku 40:689–693.Google Scholar
Picelli, A, Tamburin, S, Bonetti, P, Fontana, C, Barausse, M, Dambruoso, F, Gajofatto, F, Santilli, V, Smania, N (2012) Botulinum toxin type A injection into the gastrocnemius muscle for spastic equinus in adults with stroke: a randomized controlled trial comparing manual needle placement, electrical stimulation and ultrasonography-guided injection techniques. Am J Phys Med Rehabil 91:957–964.CrossRefGoogle ScholarPubMed
Picelli, A, Lobba, D, Midiri, A, Prandi, P, Melotti, C, Baldessarelli, S, Smania, N (2014) Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clin Rehabil 28:232–242.CrossRefGoogle ScholarPubMed
Schramm, A, Bäumer, T, Fietzek, U, Heitmann, S, Walter, U, Jost, WH (2015) Relevance of sonography for botulinum toxin treatment of cervical dystonia: an expert statement. J Neural Transm 122:1457–1463.CrossRefGoogle Scholar
Walter, U, Dressler, D (2014) Ultrasound-guided botulinum toxin injections in neurology: technique, indications and future perspectives. Expert Rev Neurother 14:923–936.CrossRefGoogle ScholarPubMed
References
Dressler, D, Adib Saberi, F (2017) Immunological safety of incobotulinumtoxinA (Xeomin®) therapy with reduced interinjection intervals. J Neural Transm 124:437–440.Google Scholar
Dressler, D, Tacik, P. Adib Saberi, F (2014a) Botulinum toxin therapy of cervical dystonia: duration of therapeutic effects. J Neural Transm 122:297–300.CrossRefGoogle ScholarPubMed
Dressler, D, Adib Saberi, F, Kollewe, K, Schrader, C (2014b) Safety aspects of incobotulinumtoxinA high dose therapy. J Neural Transm 122:327–333.CrossRefGoogle ScholarPubMed
References
Albanese, A, Abbruzzese, G, Dressler, D, Duzynski, W, Khatkova, S, Marti, MJ, Mir, P, Montecucco, C, Moro, E, Pinter, M, Relja, M, Roze, E, Skogseid, IM, Timerbaeva, S, Tzoulis, C (2015). Practical guidance for CD management involving treatment of botulinum toxin: a consensus statement. J Neurol 262:2201–2213.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J, Pappert, E (2011). Flu-like symptoms following botulinum toxin therapy. Toxicon 58:1–7.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J, Feld, J (2013). Flu-like symptoms and associated immunological response following therapy with botulinum toxins. Neurotox Res 2:298–306.CrossRefGoogle Scholar
Benecke, R, Jost, WH, Kanovsky, P, Ruzicka, E, Comes, G, Grafe, S (2005). A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 64:1949–1951.CrossRefGoogle ScholarPubMed
Bhidayasiri, R (2011). Treatment of complex cervical dystonia with botulinum toxin: involvement of deep-cervical muscles may contribute to suboptimal responses. Parkinsonism Relat Disord 17 (Suppl. 1):S20–S24.CrossRefGoogle ScholarPubMed
Brashear, A, Lew, MF, Dykstra, DD, Comella, CL, Factor, SA, Rodnitzky, RL, Trosch, R, Singer, C, Brin, MF, Murray, JJ, Wallace, JD, Willmer-Hulme, A, Koller, M (1999). Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-responsive cervical dystonia. Neurology 53:1439–1446.CrossRefGoogle ScholarPubMed
Brin, MF, Lew, MF, Adler, CH, Comella, CL, Factor, SA, Jankovic, J, O’Brien, C, Murray, JJ, Wallace, JD, Willmer-Hulme, A, Koller, M (1999). Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 53:1431–1438.CrossRefGoogle Scholar
Brin, MF, Comella, CL, Jankovic, J, Lai, F, Naumann, M; CD-017 BoNTA Study Group (2008). Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov Disord 23:1353–1360.CrossRefGoogle ScholarPubMed
Burke, RE, Fahn, S, Marsden, CD (1986). Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology 36:160–164.CrossRefGoogle ScholarPubMed
Charles, D, Brashear, A, Hauser, RA, Li, HI, Boo, LM, Brin, MF; CD 140 Study Group (2012). Efficacy, tolerability, and immunogenicity of onabotulinumtoxinA in a randomized, double-blind, placebo-controlled trial for cervical dystonia. Clin Neuropharmacol 35:208–214.CrossRefGoogle Scholar
Charles, PD, Adler, CH, Stacy, M, Comella, C, Jankovic, J, Manack Adams, A, Schwartz, M, Brin, MF (2014). Cervical dystonia and pain: characteristics and treatment patterns from CD PROBE (Cervical Dystonia Patient Registry for Observation of OnabotulinumtoxinA Efficacy). J Neurol 261:1309–1319.CrossRefGoogle Scholar
Comella, CL, Jankovic, J, Shannon, KM, Tsui, J, Swenson, M, Leurgans, S, Fan, W; Dystonia Study Group (2005). Comparison of botulinum toxin serotypes A and B for the treatment of cervical dystonia. Neurology 65:1423–1429.CrossRefGoogle Scholar
Comella, CL, Jankovic, J, Truong, DD, Hanschmann, A, Grafe, S; US XEOMIN Cervical Dystonia Study Group (2011). Efficacy and safety of incobotulinumtoxinA (NT 201, XEOMIN(R), botulinum neurotoxin type A, without accessory proteins) in patients with cervical dystonia. J Neurol Sci 308:103–109.CrossRefGoogle ScholarPubMed
Comella, CL, Perlmutter, JS, Jinnah, HA, Waliczek, TA, Rosen, AR, Galpern, WR, Adler, CA, Barbano, RL, Factor, SA, Goetz, CG, Jankovic, J, Reich, SG, Rodriguez, RL, Severt, WL, Zurowski, M, Fox, SH, Stebbins, GT (2016). Clinimetric testing of the Comprehensive Cervical Dystonia Rating Scale (CCDRS). Mov Disord 31:563–569.CrossRefGoogle Scholar
Defazio, G, Jankovic, J, Giel, JL, Papapetropoulos, S (2013). Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinet Mov (NY) 4:3.Google Scholar
Dressler, D (2000). Electromyographic evaluation of cervical dystonia for planning of botulinum toxin therapy. Eur J Neurol 7:713–718.CrossRefGoogle ScholarPubMed
Dressler, D, Benecke, R (2003). Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:34–38.CrossRefGoogle ScholarPubMed
Dressler, D, Bigalke, H (2004). Antibody-induced failure of botulinum toxin type B therapy in de novo patients. Eur Neurol 52:132–135.CrossRefGoogle ScholarPubMed
Dressler, D, Tacik, P, Saberi, FA (2015). Botulinum toxin therapy of cervical dystonia: duration of therapeutic effects. J Neural Transm 122:297–300.CrossRefGoogle ScholarPubMed
Evidente, VG, Truong, D, Jankovic, J (2014). IncobotulinumtoxinA (Xeomin(R)) injected for blepharospasm or cervical dystonia according to patient needs is well tolerated. J Neurol Sci 346:116–120.CrossRefGoogle ScholarPubMed
Finsterer, J, Maeztu, C, Revuelta, G, Reichel, G, Truong, D (2015). Collum-caput (COL-CAP) concept for conceptual anterocollis, anterocaput, and forward sagittal shift. J Neurol Sci 355:37–43.CrossRefGoogle ScholarPubMed
Greene, P, Kang, U, Fahn, S, Brin, M, Moskowitz, C, Flaster, E. (1990). Double-blind, placebo-controlled trial of botulinum toxin injections for the treatment of spasmodic torticollis. Neurology 40:1213–1218.CrossRefGoogle ScholarPubMed
Hallett, M, Albanese, A, Dressler, D, Segal, KR, Simpson, DM, Truong, D, Jankovic, J (2013). Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 67:94–114.CrossRefGoogle ScholarPubMed
Hanna, PA, Jankovic, J (1998). Mouse bioassay versus Western blot assay for botulinum toxin antibodies: correlation with clinical response. Neurology 50:1624–1629.CrossRefGoogle ScholarPubMed
Jankovic, J (2017). Botulinum toxin: state of the art. Mov Disod 32:1131–1138.CrossRefGoogle ScholarPubMed
Jankovic, J (2018). An update on new and unique uses of botulinum toxin in movement disorders. Toxicon. Epub ahead of print.CrossRefGoogle ScholarPubMed
Jankovic, J, Hunter, C, Dolimbek, BZ, Dolimbek, GS, Adler, CH, Brashear, A, Comella, CL, Gordon, M, Riley, DE, Sethi, K, Singer, C, Stacy, M, Tarsy, D, Atassi, MZ (2006). Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 67:2233–2235.CrossRefGoogle ScholarPubMed
Jankovic, J, Adler, CH, Charles, D, Comella, C, Stacy, M, Schwartz, M, Manack Adams, A, Brin, MF (2015). Primary results from the cervical dystonia patient registry for observation of onabotulinumtoxinA efficacy (CD PROBE). J Neurol Sci 349:84–93.CrossRefGoogle Scholar
Jindal, P, Jankovic, J (2017). Botulinum toxin treatment in Parkinson’s disease and atypical parkinsonian disorders. In Jabbari, Bahman (ed.) Botulinum Toxin Treatment. New York: Springer.Google Scholar
Jinnah, HA, Goodmann, E, Rosen, AR, Evatt, M, Freeman, A, Factor, S (2016). Botulinum toxin treatment failures in cervical dystonia: causes, management, and outcomes. J Neurol 263:1188–1194.CrossRefGoogle Scholar
Jost, WH, Benecke, R, Hauschke, D, Jankovic, J, Kaňovský, P, Roggenkämper, P, Simpson, DM, Comella, CL (2014). Clinical and pharmacological properties of incobotulinumtoxinA and its use in neurological disorders. Drug Des Devel Ther 9:1913–1926.Google Scholar
Kilbane, C, Ostrem, J, Galifianakis, N, Grace, J, Markun, L, Glass, GA (2012). Multichannel electromyographic mapping to optimize onabotulinumtoxinA efficacy in cervical dystonia. Tremor Other Hyperkinet Mov (NY) 2.Google ScholarPubMed
Lew, MF, Adornato, BT, Duane, DD, Dykstra, DD, Factor, SA, Massey, JM, Brin, MF, Jankovic, J, Rodnitzky, RL, Singer, C, Swenson, MR, Tarsy, D, Murray, JJ, Koller, M, Wallace, JD (1997). Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology 49:701–707.CrossRefGoogle ScholarPubMed
Misra, VP, Ehler, E, Zakine, B, Maisonobe, P, Simonetta-Moreau, M; Interest in CD Group (2012). Factors influencing response to botulinum toxin type A in patients with idiopathic cervical dystonia: results from an international observational study. BMJ Open 14(2).Google Scholar
Mordin, M, Masaquel, C, Abbott, C, Copley-Merriman, C (2014). Factors affecting the health-related quality of life of patients with cervical dystonia and impact of treatment with abobotulinumtoxinA (Dysport): results from a randomised, double-blind, placebo-controlled study. BMJ Open 4:e005150.CrossRefGoogle ScholarPubMed
Nijmeijer, SW, Koelman, JH, Kamphuis, DJ, Tijssen, MA (2012). Muscle selection for treatment of cervical dystonia with botulinum toxin: a systematic review. Parkinsonism Relat Disord 18:731–736.CrossRefGoogle ScholarPubMed
Odergren, T, Hjaltason, H, Kaakkola, S, Solders, G, Hanko, J, Fehling, C, Marttila, RJ, Lundh, H, Gedin, S, Westergren, I, Richardson, A, Dott, C, Cohen, H (1998). A double blind, randomised, parallel group study to investigate the dose equivalence of Dysport and Botox in the treatment of cervical dystonia. J Neurol Neurosurg Psychiatry 64:6–12.CrossRefGoogle ScholarPubMed
Pappert, EJ, Germanson, T; Myobloc/Neurobloc European Cervical Dystonia Study (2008). Botulinum toxin type B vs. type A in toxin-naive patients with cervical dystonia: randomized, double-blind, noninferiority trial. Mov Disord 23: 510–517.CrossRefGoogle ScholarPubMed
Patel, N, Hanfelt, J, Marsh, L, Jankovic, J; Members of the Dystonia Coalition (2014). Alleviating manoeuvres (sensory tricks) in cervical dystonia. J Neurol Neurosurg Psychiatry 85(8): 882–884.CrossRefGoogle Scholar
Poewe, W, Deuschl, G, Nebe, A, Feifel, E, Wissel, J, Benecke, R, Kessler, KR, Ceballos-Baumann, AO, Ohly, A, Oertel, W, Künig, G;